chore(library): remove "set_option pp.*" commands
This commit is contained in:
parent
ce21996635
commit
fbe80d48dc
6 changed files with 0 additions and 13 deletions
|
@ -21,9 +21,6 @@ of_nat_nonneg (nat.gcd (nat_abs a) (nat_abs b))
|
|||
theorem gcd.comm (a b : ℤ) : gcd a b = gcd b a :=
|
||||
by rewrite [↑gcd, nat.gcd.comm]
|
||||
|
||||
set_option pp.all true
|
||||
set_option pp.numerals false
|
||||
|
||||
theorem gcd_zero_right (a : ℤ) : gcd a 0 = abs a :=
|
||||
by rewrite [↑gcd, nat_abs_zero, nat.gcd_zero_right, of_nat_nat_abs]
|
||||
|
||||
|
|
|
@ -299,7 +299,6 @@ begin
|
|||
intros, apply rfl
|
||||
end
|
||||
|
||||
set_option pp.full_names true
|
||||
theorem reduce_equiv : ∀ a : prerat, reduce a ≡ a
|
||||
| (mk an ad adpos) :=
|
||||
decidable.by_cases
|
||||
|
|
|
@ -360,9 +360,6 @@ eq_of_sub_eq_zero this
|
|||
section
|
||||
open int
|
||||
|
||||
set_option pp.numerals false
|
||||
set_option pp.implicit true
|
||||
|
||||
theorem num_nonneg_of_nonneg {q : ℚ} (H : q ≥ 0) : num q ≥ 0 :=
|
||||
have of_int (num q) ≥ of_int 0,
|
||||
begin
|
||||
|
|
|
@ -127,7 +127,6 @@ by rewrite [-finset.to_set_upto n]; apply finite_finset
|
|||
theorem to_finset_upto (n : ℕ) : to_finset {i | i < n} = finset.upto n :=
|
||||
by apply (to_finset_eq_of_to_set_eq !finset.to_set_upto)
|
||||
|
||||
set_option pp.notation false
|
||||
theorem finite_powerset (s : set A) [fins : finite s] : finite 𝒫 s :=
|
||||
assert H : 𝒫 s = finset.to_set '[finset.to_set (#finset 𝒫 (to_finset s))],
|
||||
from ext (take t, iff.intro
|
||||
|
|
|
@ -139,9 +139,6 @@ lemma fin_lcoset_subset {S : finset A} (Psub : S ⊆ H) : ∀ x, x ∈ H → fin
|
|||
lemma finsubg_lcoset_id {a : A} : a ∈ H → fin_lcoset H a = H :=
|
||||
by rewrite [eq_eq_to_set_eq, fin_lcoset_eq, mem_eq_mem_to_set]; apply subgroup_lcoset_id
|
||||
|
||||
set_option pp.notation false
|
||||
set_option pp.full_names true
|
||||
|
||||
lemma finsubg_inv_lcoset_eq_rcoset {a : A} :
|
||||
fin_inv (fin_lcoset H a) = fin_rcoset H a⁻¹ :=
|
||||
begin
|
||||
|
|
|
@ -41,8 +41,6 @@ theorem egcd_succ (x y : ℕ) :
|
|||
egcd x (succ y) = prod.cases_on (egcd (succ y) (x mod succ y)) (egcd_rec_f (x div succ y)) :=
|
||||
well_founded.fix_eq egcd.F (x, succ y)
|
||||
|
||||
set_option pp.coercions true
|
||||
|
||||
theorem egcd_of_pos (x : ℕ) {y : ℕ} (ypos : y > 0) :
|
||||
let erec := egcd y (x mod y), u := pr₁ erec, v := pr₂ erec in
|
||||
egcd x y = (v, u - v * (x div y)) :=
|
||||
|
|
Loading…
Reference in a new issue