doc(examples/lean): update notation
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
2ce245d68e
commit
fd8a1266d0
1 changed files with 9 additions and 8 deletions
|
@ -9,26 +9,27 @@ infix 50 ⊆ : subrelation
|
|||
-- We define it as the intersection of all transitive relations containing R
|
||||
definition tcls {A : TypeU} (R : A → A → Bool) (a b : A)
|
||||
:= ∀ P, (reflexive P) → (transitive P) → (R ⊆ P) → P a b
|
||||
notation 65 _⁺ : tcls -- use superscript + as notation for transitive closure
|
||||
|
||||
theorem tcls_trans {A : TypeU} {R : A → A → Bool} {a b c : A} (H1 : tcls R a b) (H2 : tcls R b c) : tcls R a c
|
||||
theorem tcls_trans {A : TypeU} {R : A → A → Bool} {a b c : A} (Hab : R⁺ a b) (Hbc : R⁺ b c) : R⁺ a c
|
||||
:= take P, assume Hrefl Htrans Hsub,
|
||||
let Pab : P a b := H1 P Hrefl Htrans Hsub,
|
||||
Pbc : P b c := H2 P Hrefl Htrans Hsub
|
||||
let Pab : P a b := Hab P Hrefl Htrans Hsub,
|
||||
Pbc : P b c := Hbc P Hrefl Htrans Hsub
|
||||
in Htrans a b c Pab Pbc
|
||||
|
||||
theorem tcls_refl {A : TypeU} (R : A → A → Bool) : ∀ a, tcls R a a
|
||||
theorem tcls_refl {A : TypeU} (R : A → A → Bool) : ∀ a, R⁺ a a
|
||||
:= take a P, assume Hrefl Htrans Hsub,
|
||||
Hrefl a
|
||||
|
||||
theorem tcls_sub {A : TypeU} {R : A → A → Bool} {a b : A} (H : R a b) : tcls R a b
|
||||
theorem tcls_sub {A : TypeU} {R : A → A → Bool} {a b : A} (H : R a b) : R⁺ a b
|
||||
:= take P, assume Hrefl Htrans Hsub,
|
||||
Hsub a b H
|
||||
|
||||
theorem tcls_step {A : TypeU} {R : A → A → Bool} {a b c : A} (H1 : R a b) (H2 : tcls R b c) : tcls R a c
|
||||
theorem tcls_step {A : TypeU} {R : A → A → Bool} {a b c : A} (H1 : R a b) (H2 : R⁺ b c) : R⁺ a c
|
||||
:= take P, assume Hrefl Htrans Hsub,
|
||||
Htrans a b c (Hsub a b H1) (H2 P Hrefl Htrans Hsub)
|
||||
|
||||
theorem tcls_smallest {A : TypeU} {R : A → A → Bool} : ∀ P, (reflexive P) → (transitive P) → (R ⊆ P) → (tcls R ⊆ P)
|
||||
theorem tcls_smallest {A : TypeU} {R : A → A → Bool} : ∀ P, (reflexive P) → (transitive P) → (R ⊆ P) → (R⁺ ⊆ P)
|
||||
:= take P, assume Hrefl Htrans Hsub,
|
||||
take a b, assume H : tcls R a b,
|
||||
take a b, assume H : R⁺ a b,
|
||||
have P a b : H P Hrefl Htrans Hsub
|
||||
|
|
Loading…
Reference in a new issue