fix(library/elaborator): bug in process_lower

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2013-12-21 03:58:39 -08:00
parent 66f106da8c
commit fddcdb8f40
4 changed files with 26 additions and 116 deletions

View file

@ -145,6 +145,8 @@ class elaborator::imp {
unsigned m_next_id;
justification m_conflict;
bool m_first;
level m_U; // universe U used for builtin kernel axioms
level m_M; // universe M
// options
bool m_use_justifications;
@ -1031,9 +1033,17 @@ class elaborator::imp {
expr choices[5] = { Bool, Type(), Type(level() + 1), TypeM, TypeU };
push_active(mk_choice_constraint(get_context(c), b, 5, choices, new_jst));
return true;
} else if (m_env->is_ge(ty_level(a), m_U)) {
expr choices[2] = { a, Type(ty_level(a) + 1) };
push_active(mk_choice_constraint(get_context(c), b, 2, choices, new_jst));
return true;
} else if (m_env->is_ge(ty_level(a), m_M)) {
expr choices[3] = { a, Type(ty_level(a) + 1), TypeU };
push_active(mk_choice_constraint(get_context(c), b, 3, choices, new_jst));
return true;
} else {
expr choices[5] = { a, Type(ty_level(a) + 1), Type(ty_level(a) + 2), TypeM, TypeU };
push_active(mk_choice_constraint(get_context(c), b, 5, choices, new_jst));
expr choices[4] = { a, Type(ty_level(a) + 1), TypeM, TypeU };
push_active(mk_choice_constraint(get_context(c), b, 4, choices, new_jst));
return true;
}
} else {
@ -1534,6 +1544,8 @@ public:
set_options(opts);
m_next_id = 0;
m_first = true;
m_U = m_env->get_uvar("U");
m_M = m_env->get_uvar("M");
// display(std::cout);
}

View file

@ -207,8 +207,7 @@ Failed to solve
Bool
Bool
Failed to solve
(?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type 2)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
Destruct/Decompose
⊢ Type ≺ ?M::0
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
@ -239,17 +238,6 @@ Failed to solve
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type 3) ≺ Type
Substitution
⊢ (Type 3) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 2)
Assumption 3
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
⊢ (Type M+1) ≺ Type
Substitution
@ -257,7 +245,7 @@ Failed to solve
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type M)
Assumption 4
Assumption 3
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
@ -268,13 +256,12 @@ Failed to solve
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type U)
Assumption 5
Assumption 4
Assignment
⊢ ?M::1 ≈ Type
Assumption 0
Failed to solve
(?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type 2)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
⊢ (?M::0 ≈ Type) ⊕ (?M::0 ≈ (Type 1)) ⊕ (?M::0 ≈ (Type M)) ⊕ (?M::0 ≈ (Type U))
Destruct/Decompose
⊢ Type ≺ ?M::0
(line: 24: pos: 6) Type of argument 2 must be convertible to the expected type in the application of
@ -290,10 +277,10 @@ Failed to solve
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ Type
Assumption 7
Assumption 6
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Assumption 5
Failed to solve
⊢ (Type 2) ≺ Bool
Substitution
@ -301,21 +288,10 @@ Failed to solve
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 1)
Assumption 8
Assumption 7
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Failed to solve
⊢ (Type 3) ≺ Bool
Substitution
⊢ (Type 3) ≺ ?M::1
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type 2)
Assumption 9
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Assumption 5
Failed to solve
⊢ (Type M+1) ≺ Bool
Substitution
@ -323,10 +299,10 @@ Failed to solve
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type M)
Assumption 10
Assumption 8
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Assumption 5
Failed to solve
⊢ (Type U+1) ≺ Bool
Substitution
@ -334,10 +310,10 @@ Failed to solve
Propagate type, ?M::0 : ?M::1
Assignment
⊢ ?M::0 ≈ (Type U)
Assumption 11
Assumption 9
Assignment
⊢ ?M::1 ≈ Bool
Assumption 6
Assumption 5
Failed to solve
a : Bool, b : Bool, H : ?M::2, H_a : ?M::6 ⊢ (a ⇒ b) ⇒ a ≺ a
Substitution

View file

@ -1,50 +0,0 @@
Variable Eq {A : (Type U+1)} (a b : A) : Bool
Infix 50 === : Eq
Axiom EqSubst {A : (Type U+1)} {a b : A} (P : A -> Bool) (H1 : P a) (H2 : a === b) : P b
Axiom EqRefl {A : (Type U+1)} (a : A) : a === a
Theorem EqSymm {A : (Type U+1)} {a b : A} (H : a === b) : b === a :=
EqSubst (fun x, x === a) (EqRefl a) H
Theorem EqTrans {A : (Type U+1)} {a b c : A} (H1 : a === b) (H2 : b === c) : a === c :=
EqSubst (fun x, a === x) H1 H2
Theorem EqCongr {A B : (Type U+1)} (f : A -> B) {a b : A} (H : a === b) : (f a) === (f b) :=
EqSubst (fun x, (f a) === (f x)) (EqRefl (f a)) H
Theorem EqCongr1 {A : (Type U+1)} {B : A -> (Type U+1)} {f g : Pi x : A, B x} (a : A) (H : f === g) : (f a) === (g a) :=
EqSubst (fun h : (Pi x : A, B x), (f a) === (h a)) (EqRefl (f a)) H
Axiom ProofIrrelevance (P : Bool) (pr1 pr2 : P) : pr1 === pr2
Axiom EqCast {A B : (Type U)} (H : A === B) (a : A) : B
Axiom EqCastHom {A B : (Type U)} {a1 a2 : A} (HAB : A === B) (H : a1 === a2) : (EqCast HAB a1) === (EqCast HAB a2)
Axiom EqCastRefl {A : (Type U)} (a : A) : (EqCast (EqRefl A) a) === a
Variable Vector : (Type U) -> Nat -> (Type U)
Variable empty {A : (Type U)} : Vector A 0
Variable append {A : (Type U)} {m n : Nat} (v1 : Vector A m) (v2 : Vector A n) : Vector A (m + n)
Axiom Plus0 (n : Nat) : (n + 0) === n
Theorem VectorPlus0 (A : (Type U)) (n : Nat) : (Vector A (n + 0)) === (Vector A n) :=
EqSubst (fun x : Nat, (Vector A x) === (Vector A n))
(EqRefl (Vector A n))
(EqSymm (Plus0 n))
SetOption pp::implicit true
(* Check fun (A : Type) (n : Nat), VectorPlus0 A n *)
Axiom AppendNil {A : Type} {n : Nat} (v : Vector A n) : (EqCast (VectorPlus0 A n) (append v empty)) === v
Variable List : (Type U) -> (Type U).
Variables A B : (Type U)
Axiom H1 : A === B.
Theorem LAB : (List A) === (List B) :=
EqCongr List H1
Variable l1 : List A
Variable l2 : List B
Variable H2 : (EqCast LAB l1) == l2
(*
Theorem EqCastInv {A B : (Type U)} (H : A === B) (a : A) : (EqCast (EqSymm H) (EqCast H a)) === a :=
*)
(*
Variable ReflCast : Pi (A : (Type U)) (a : A) (H : Eq (Type U) A A), Eq A (Casting A A H a) a
Theorem AppEq (A : (Type U)) (B : A -> (Type U)) (a b : A) (H : Eq A a b) : (Eq (Type U) (B b) (B a)) :=
EqCongr A (Type U) B b a (EqSymm A a b H)
Theorem EqCongr2 (A : (Type U)) (B : A -> (Type U)) (f : Pi x : A, B x) (a b : A) (H : Eq A a b) : Eq (B a) (f a) (Casting (B b) (B a) (AppEq A B a b H) (f a)) (f b) :=
EqSubst (B a) a b (fun x : A, Eq (B a) (f a) (Casting (B x) (B a) (AppEq A B a b H) (f a)) (f x)
*)

View file

@ -1,28 +0,0 @@
Set: pp::colors
Set: pp::unicode
Assumed: Eq
Assumed: EqSubst
Assumed: EqRefl
Proved: EqSymm
Proved: EqTrans
Proved: EqCongr
Proved: EqCongr1
Assumed: ProofIrrelevance
Assumed: EqCast
Assumed: EqCastHom
Assumed: EqCastRefl
Assumed: Vector
Assumed: empty
Assumed: append
Assumed: Plus0
Proved: VectorPlus0
Set: lean::pp::implicit
Assumed: AppendNil
Assumed: List
Assumed: A
Assumed: B
Assumed: H1
Proved: LAB
Assumed: l1
Assumed: l2
Assumed: H2