From fe8a858d79aa9a6ec7810c66c0266e79db03bb90 Mon Sep 17 00:00:00 2001 From: Floris van Doorn Date: Sun, 22 Nov 2015 03:08:31 -0500 Subject: [PATCH] feat(hott): add recursor to refl_quotient --- hott/algebra/e_closure.hlean | 18 +++----------- hott/hit/hit.md | 16 +++++++----- hott/hit/refl_quotient.hlean | 48 ++++++++++++++++-------------------- hott/hit/set_quotient.hlean | 2 +- hott/hit/two_quotient.hlean | 18 ++++++++------ 5 files changed, 45 insertions(+), 57 deletions(-) diff --git a/hott/algebra/e_closure.hlean b/hott/algebra/e_closure.hlean index c1ad224f3..5a01c4ba7 100644 --- a/hott/algebra/e_closure.hlean +++ b/hott/algebra/e_closure.hlean @@ -22,6 +22,7 @@ namespace e_closure infix ` ⬝r `:75 := e_closure.trans postfix `⁻¹ʳ`:(max+10) := e_closure.symm notation `[`:max a `]`:0 := e_closure.of_rel a + notation `<`:max p `>`:0 := e_closure.of_path _ p abbreviation rfl {A : Type} {R : A → A → Type} {a : A} := of_path R (idpath a) end e_closure open e_closure @@ -57,21 +58,6 @@ section exact ap_con g (e_closure.elim e r) (e_closure.elim e r') ⬝ (IH₁ ◾ IH₂) end -/- definition ap_e_closure_elim_h_inv [unfold_full] {B C : Type} {f : A → B} {g : B → C} - (e : Π⦃a a' : A⦄, R a a' → f a = f a') - {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} - (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') - : ap_e_closure_elim_h e p t⁻¹ʳ = ap_inv g (e_closure.elim e t) ⬝ (ap_e_closure_elim_h e p t)⁻² := - by reflexivity - - definition ap_e_closure_elim_h_con [unfold_full] {B C : Type} {f : A → B} {g : B → C} - (e : Π⦃a a' : A⦄, R a a' → f a = f a') - {e' : Π⦃a a' : A⦄, R a a' → g (f a) = g (f a')} - (p : Π⦃a a' : A⦄ (s : R a a'), ap g (e s) = e' s) (t : T a a') (t' : T a' a'') - : ap_e_closure_elim_h e p (t ⬝r t') = ap_con g (e_closure.elim e t) (e_closure.elim e t') ⬝ - (ap_e_closure_elim_h e p t ◾ ap_e_closure_elim_h e p t') := - by reflexivity-/ - definition ap_e_closure_elim [unfold 10] {B C : Type} {f : A → B} (g : B → C) (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : T a a') : ap g (e_closure.elim e t) = e_closure.elim (λa a' r, ap g (e r)) t := @@ -141,6 +127,7 @@ section intro a a' a'' t t', exact t ⬝r t', end +/- definition e_closure.transport_left {f : A → B} (e : Π⦃a a' : A⦄, R a a' → f a = f a') (t : e_closure R a a') (p : a = a'') : e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t := @@ -155,6 +142,7 @@ section (t : e_closure R a a) (p : a = a') : e_closure.elim e (p ▸ t) = (ap f p)⁻¹ ⬝ e_closure.elim e t ⬝ (ap f p) := by induction p; esimp; exact !idp_con⁻¹ +-/ /- dependent elimination -/ diff --git a/hott/hit/hit.md b/hott/hit/hit.md index 38caac3e7..c73e0dbd5 100644 --- a/hott/hit/hit.md +++ b/hott/hit/hit.md @@ -14,9 +14,13 @@ hits related to homotopy theory are defined in Files in this folder: -* [quotient](quotient.hlean) (quotients, primitive) -* [trunc](trunc.hlean) (truncation, primitive) -* [colimit](colimit.hlean) (Colimits of arbitrary diagrams and sequential colimits, defined using quotients) -* [pushout](pushout.hlean) (Pushouts, defined using quotients) -* [coeq](coeq.hlean) (Co-equalizers, defined using quotients) -* [set_quotient](set_quotient.hlean) (Set-quotients, defined using quotients and set-truncation) +* [quotient](quotient.hlean): quotients, primitive +* [trunc](trunc.hlean): truncation, primitive +* [colimit](colimit.hlean): Colimits of arbitrary diagrams and sequential colimits, defined using quotients +* [pushout](pushout.hlean): Pushouts, defined using quotients +* [coeq](coeq.hlean): Co-equalizers, defined using quotients +* [set_quotient](set_quotient.hlean): Set-quotients, defined using quotients and set-truncation + +The following hits have also 2-constructors. They are defined only using quotients. +* [two_quotient](two_quotient.hlean): Quotients where you can also specify 2-paths. These are used for all hits which have 2-constructors, and they are almost fully general for such hits, as long as they are nonrecursive +* [refl_quotient](refl_quotient.hlean): Quotients where you can also specify 2-paths \ No newline at end of file diff --git a/hott/hit/refl_quotient.hlean b/hott/hit/refl_quotient.hlean index bc4e46784..3f5cc05e1 100644 --- a/hott/hit/refl_quotient.hlean +++ b/hott/hit/refl_quotient.hlean @@ -20,7 +20,7 @@ section open refl_quotient_Q local abbreviation Q := refl_quotient_Q - definition refl_quotient : Type := simple_two_quotient R Q -- TODO: define this in root namespace + definition refl_quotient : Type := simple_two_quotient R Q definition rclass_of (a : A) : refl_quotient := incl0 R Q a definition req_of_rel ⦃a a' : A⦄ (r : R a a') : rclass_of a = rclass_of a' := @@ -29,32 +29,26 @@ section definition pρ (a : A) : req_of_rel (ρ a) = idp := incl2 R Q (Qmk a) - -- protected definition rec {P : refl_quotient → Type} - -- (Pc : Π(a : A), P (rclass_of a)) - -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') - -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) - -- (x : refl_quotient) : P x := - -- sorry + protected definition rec {P : refl_quotient → Type} (Pc : Π(a : A), P (rclass_of a)) + (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') + (Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) (x : refl_quotient) : P x := + begin + induction x, + exact Pc a, + exact Pp s, + induction q, apply Pr + end - -- protected definition rec_on [reducible] {P : refl_quotient → Type} - -- (Pc : Π(a : A), P (rclass_of a)) - -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') - -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) : P y := - -- rec Pinl Pinr Pglue y + protected definition rec_on [reducible] {P : refl_quotient → Type} (x : refl_quotient) + (Pc : Π(a : A), P (rclass_of a)) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') + (Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) : P x := + rec Pc Pp Pr x - -- definition rec_req_of_rel {P : Type} {P : refl_quotient → Type} - -- (Pc : Π(a : A), P (rclass_of a)) - -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') - -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) - -- ⦃a a' : A⦄ (r : R a a') : apdo (rec Pc Pp Pr) (req_of_rel r) = Pp r := - -- !rec_incl1 - - -- theorem rec_pρ {P : Type} {P : refl_quotient → Type} - -- (Pc : Π(a : A), P (rclass_of a)) - -- (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') - -- (Pr : Π(a : A), Pp (ρ a) =[pρ a] idpo) (a : A) - -- : square (ap02 (rec Pc Pp Pr) (pρ a)) (Pr a) (elim_req_of_rel Pr (ρ a)) idp := - -- !rec_incl2 + definition rec_req_of_rel {P : Type} {P : refl_quotient → Type} (Pc : Π(a : A), P (rclass_of a)) + (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a =[req_of_rel H] Pc a') + (Pr : Π(a : A), change_path (pρ a) (Pp (ρ a)) = idpo) ⦃a a' : A⦄ (r : R a a') + : apdo (rec Pc Pp Pr) (req_of_rel r) = Pp r := + !rec_incl1 protected definition elim {P : Type} (Pc : Π(a : A), P) (Pp : Π⦃a a' : A⦄ (H : R a a'), Pc a = Pc a') (Pr : Π(a : A), Pp (ρ a) = idp) @@ -84,7 +78,7 @@ end end refl_quotient attribute refl_quotient.rclass_of [constructor] -attribute /-refl_quotient.rec-/ refl_quotient.elim [unfold 8] [recursor 8] +attribute refl_quotient.rec refl_quotient.elim [unfold 8] [recursor 8] --attribute refl_quotient.elim_type [unfold 9] -attribute /-refl_quotient.rec_on-/ refl_quotient.elim_on [unfold 5] +attribute refl_quotient.rec_on refl_quotient.elim_on [unfold 5] --attribute refl_quotient.elim_type_on [unfold 6] diff --git a/hott/hit/set_quotient.hlean b/hott/hit/set_quotient.hlean index 89a7eb9df..b86eb8adc 100644 --- a/hott/hit/set_quotient.hlean +++ b/hott/hit/set_quotient.hlean @@ -34,7 +34,7 @@ section { intro x', apply Pt}, { intro y, fapply (quotient.rec_on y), { exact Pc}, - { intros, apply equiv.to_inv !(pathover_compose _ tr), apply Pp}} + { intros, exact pathover_of_pathover_ap P tr (Pp H)}} end protected definition rec_on [reducible] {P : set_quotient → Type} (x : set_quotient) diff --git a/hott/hit/two_quotient.hlean b/hott/hit/two_quotient.hlean index d8fa7d12e..fd76c80b7 100644 --- a/hott/hit/two_quotient.hlean +++ b/hott/hit/two_quotient.hlean @@ -133,6 +133,7 @@ namespace simple_two_quotient local attribute simple_two_quotient f i D incl0 aux incl1 incl2' inclt [reducible] local attribute i aux incl0 [constructor] + parameters {R Q} protected definition rec {P : D → Type} (P0 : Π(a : A), P (incl0 a)) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a') (P2 : Π⦃a : A⦄ ⦃r : T a a⦄ (q : Q r), @@ -358,6 +359,7 @@ namespace two_quotient definition incl2 (q : Q t t') : inclt t = inclt t' := eq_of_con_inv_eq_idp (incl2 _ _ (Qmk R q)) + parameters {R Q} protected definition rec {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a)) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a') (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), @@ -389,14 +391,14 @@ namespace two_quotient (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t') ⦃a a' : A⦄ (s : R a a') : apdo (rec P0 P1 P2) (incl1 s) = P1 s := - rec_incl1 _ _ _ _ _ s + rec_incl1 _ _ _ s theorem rec_inclt {P : two_quotient → Type} (P0 : Π(a : A), P (incl0 a)) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a =[incl1 s] P0 a') (P2 : Π⦃a a' : A⦄ ⦃t t' : T a a'⦄ (q : Q t t'), change_path (incl2 q) (e_closure.elimo incl1 P1 t) = e_closure.elimo incl1 P1 t') ⦃a a' : A⦄ (t : T a a') : apdo (rec P0 P1 P2) (inclt t) = e_closure.elimo incl1 P1 t := - rec_inclt _ _ _ _ _ t + rec_inclt _ _ _ t protected definition elim {P : Type} (P0 : A → P) (P1 : Π⦃a a' : A⦄ (s : R a a'), P0 a = P0 a') @@ -437,15 +439,15 @@ namespace two_quotient : square (ap02 (elim P0 P1 P2) (incl2 q)) (P2 q) (elim_inclt P2 t) (elim_inclt P2 t') := begin rewrite [↑[incl2,elim],ap_eq_of_con_inv_eq_idp], - xrewrite [eq_top_of_square (elim_incl2 R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))], - xrewrite [{simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) + xrewrite [eq_top_of_square (elim_incl2 P0 P1 (elim_1 A R Q P P0 P1 P2) (Qmk R q))], + xrewrite [{simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2) (t ⬝r t'⁻¹ʳ)} - idpath (ap_con (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2)) + idpath (ap_con (simple_two_quotient.elim P0 P1 (elim_1 A R Q P P0 P1 P2)) (inclt t) (inclt t')⁻¹ ⬝ - (simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t ◾ - (ap_inv (simple_two_quotient.elim R Q2 P0 P1 (elim_1 A R Q P P0 P1 P2)) + (simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2) t ◾ + (ap_inv (simple_two_quotient.elim P0 P1 (elim_1 A R Q P P0 P1 P2)) (inclt t') ⬝ - inverse2 (simple_two_quotient.elim_inclt R Q2 (elim_1 A R Q P P0 P1 P2) t')))),▸*], + inverse2 (simple_two_quotient.elim_inclt (elim_1 A R Q P P0 P1 P2) t')))),▸*], rewrite [-con.assoc _ _ (con_inv_eq_idp _),-con.assoc _ _ (_ ◾ _),con.assoc _ _ (ap_con _ _ _), con.left_inv,↑whisker_left,con2_con_con2,-con.assoc (ap_inv _ _)⁻¹, con.left_inv,+idp_con,eq_of_con_inv_eq_idp_con2],