feat(library/hott): multiple changes in the HoTT library

Jakob accidentally undid some of my changes in commit aad4592, reverted that;
made style changes in multiple files;
in types/sigma: finished porting Coq-HoTT, and finished unfinished proof;
in axioms/funext: rename path_forall, make arguments implicit and make instance visible
This commit is contained in:
Floris van Doorn 2014-12-04 23:35:38 -05:00
parent 5278f70dea
commit fec45abda5
10 changed files with 893 additions and 723 deletions

View file

@ -6,7 +6,7 @@
import .natural_transformation hott.path
import data.unit data.sigma data.prod data.empty data.bool hott.types.prod
import data.unit data.sigma data.prod data.empty data.bool hott.types.prod hott.types.sigma
open path prod eq eq.ops
@ -94,7 +94,7 @@ namespace precategory
definition prod_precategory {obC obD : Type} (C : precategory obC) (D : precategory obD)
: precategory (obC × obD) :=
mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
(λ a b, trunc_prod nat.zero (!homH) (!homH))
(λ a b, !trunc_prod)
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
(λ a, (id, id))
(λ a b c d h g f, pair_path !assoc !assoc )

View file

@ -16,20 +16,19 @@ inductive funext [class] : Type :=
namespace funext
context
universe variables l k
parameters [F : funext.{l k}] {A : Type.{l}} {P : A → Type.{k}} (f g : Π x, P x)
universe variables l k
variables [F : funext.{l k}] {A : Type.{l}} {P : A → Type.{k}}
protected definition ap [instance] : is_equiv (@apD10 A P f g) :=
rec_on F (λ (H : Π A P f g, _), !H)
include F
protected definition ap [instance] (f g : Π x, P x) : is_equiv (@apD10 A P f g) :=
rec_on F (λ(H : Π A P f g, _), !H)
definition path_forall : f g → f ≈ g :=
@is_equiv.inv _ _ (@apD10 A P f g) ap
definition path_pi {f g : Π x, P x} : f g → f ≈ g :=
is_equiv.inv (@apD10 A P f g)
end
definition path_forall2 [F : funext] {A B : Type} {P : A → B → Type}
omit F
definition path_pi2 [F : funext] {A B : Type} {P : A → B → Type}
(f g : Πx y, P x y) : (Πx y, f x y ≈ g x y) → f ≈ g :=
λ E, path_forall f g (λx, path_forall (f x) (g x) (E x))
λ E, path_pi (λx, path_pi (E x))
end funext

View file

@ -30,7 +30,7 @@ namespace is_equiv
variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B}
-- The identity function is an equivalence.
protected definition id_is_equiv : (@is_equiv A A id) := is_equiv.mk id (λa, idp) (λa, idp) (λa, idp)
definition id_is_equiv : (@is_equiv A A id) := is_equiv.mk id (λa, idp) (λa, idp) (λa, idp)
-- The composition of two equivalences is, again, an equivalence.
protected definition compose [Hf : is_equiv f] [Hg : is_equiv g] : (is_equiv (g ∘ f)) :=

View file

@ -18,15 +18,15 @@ namespace is_equiv
definition precomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
: is_equiv (precomp f C) :=
adjointify (precomp f C) (λh, h ∘ f⁻¹)
(λh, path_forall _ _ (λx, ap h (sect f x)))
(λg, path_forall _ _ (λy, ap g (retr f y)))
(λh, path_pi (λx, ap h (sect f x)))
(λg, path_pi (λy, ap g (retr f y)))
--Postcomposing with an equivalence is an equivalence
definition postcomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
: is_equiv (postcomp f C) :=
adjointify (postcomp f C) (λl, f⁻¹ ∘ l)
(λh, path_forall _ _ (λx, retr f (h x)))
(λg, path_forall _ _ (λy, sect f (g y)))
(λh, path_pi (λx, retr f (h x)))
(λg, path_pi (λy, sect f (g y)))
--Conversely, if pre- or post-composing with a function is always an equivalence,
--then that function is also an equivalence. It's convenient to know

File diff suppressed because it is too large Load diff

View file

@ -78,12 +78,12 @@ namespace truncation
variables {A B : Type}
-- maybe rename to is_trunc_succ.mk
-- TODO: rename to is_trunc_succ
definition is_trunc_succ (A : Type) (n : trunc_index) [H : ∀x y : A, is_trunc n (x ≈ y)]
: is_trunc n.+1 A :=
is_trunc.mk (λ x y, !is_trunc.to_internal)
-- maybe rename to is_trunc_succ.elim
-- TODO: rename to is_trunc_path
definition succ_is_trunc (n : trunc_index) [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x ≈ y) :=
is_trunc.mk (!is_trunc.to_internal x y)

View file

@ -10,30 +10,30 @@ import .sigma .pi
open path sigma sigma.ops equiv is_equiv
inductive W {A : Type} (B : A → Type) :=
sup : Π(a : A), (B a → W B) → W B
inductive Wtype {A : Type} (B : A → Type) :=
sup : Π(a : A), (B a → Wtype B) → Wtype B
namespace W
notation `WW` binders `,` r:(scoped B, W B) := r
namespace Wtype
notation `W` binders `,` r:(scoped B, Wtype B) := r
universe variables l k
variables {A A' : Type.{l}} {B B' : A → Type.{k}} {C : Π(a : A), B a → Type}
{a a' : A} {f : B a → W B} {f' : B a' → W B} {w w' : WW(a : A), B a}
universe variables u v
variables {A A' : Type.{u}} {B B' : A → Type.{v}} {C : Π(a : A), B a → Type}
{a a' : A} {f : B a → W a, B a} {f' : B a' → W a, B a} {w w' : W(a : A), B a}
definition pr1 (w : WW(a : A), B a) : A :=
W.rec_on w (λa f IH, a)
definition pr1 (w : W(a : A), B a) : A :=
Wtype.rec_on w (λa f IH, a)
definition pr2 (w : WW(a : A), B a) : B (pr1 w) → WW(a : A), B a :=
W.rec_on w (λa f IH, f)
definition pr2 (w : W(a : A), B a) : B (pr1 w) → W(a : A), B a :=
Wtype.rec_on w (λa f IH, f)
namespace ops
postfix `.1`:(max+1) := W.pr1
postfix `.2`:(max+1) := W.pr2
notation `⟨` a `,` f `⟩`:0 := W.sup a f --input ⟨ ⟩ as \< \>
postfix `.1`:(max+1) := Wtype.pr1
postfix `.2`:(max+1) := Wtype.pr2
notation `⟨` a `,` f `⟩`:0 := Wtype.sup a f --input ⟨ ⟩ as \< \>
end ops
open ops
protected definition eta (w : WW a, B a) : ⟨w.1 , w.2⟩ ≈ w :=
protected definition eta (w : W a, B a) : ⟨w.1 , w.2⟩ ≈ w :=
cases_on w (λa f, idp)
definition path_W_sup (p : a ≈ a') (q : p ▹ f ≈ f') : ⟨a, f⟩ ≈ ⟨a', f'⟩ :=
@ -112,18 +112,18 @@ namespace W
: transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) ≈ transport B' pq.1 :=
destruct pq transport_pr1_path_W
definition isequiv_path_W /-[instance]-/ (w w' : W B)
definition isequiv_path_W /-[instance]-/ (w w' : W a, B a)
: is_equiv (@path_W_uncurried A B w w') :=
adjointify path_W_uncurried
(λp, dpair (p..1) (p..2))
eta_path_W_uncurried
sup_path_W_uncurried
definition equiv_path_W (w w' : W B) : (Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2) ≃ (w ≈ w') :=
definition equiv_path_W (w w' : W a, B a) : (Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2) ≃ (w ≈ w') :=
equiv.mk path_W_uncurried !isequiv_path_W
definition double_induction_on {P : W B → W B → Type} (w w' : W B)
(H : ∀ (a a' : A) (f : B a → W B) (f' : B a' → W B),
definition double_induction_on {P : (W a, B a) → (W a, B a) → Type} (w w' : W a, B a)
(H : ∀ (a a' : A) (f : B a → W a, B a) (f' : B a' → W a, B a),
(∀ (b : B a) (b' : B a'), P (f b) (f' b')) → P (sup a f) (sup a' f')) : P w w' :=
begin
revert w',
@ -135,8 +135,8 @@ namespace W
/- truncatedness -/
open truncation
definition trunc_W [FUN : funext.{k (max 1 l k)}] (n : trunc_index) [HA : is_trunc (n.+1) A]
: is_trunc (n.+1) (WW a, B a) :=
definition trunc_W [FUN : funext.{v (max 1 u v)}] (n : trunc_index) [HA : is_trunc (n.+1) A]
: is_trunc (n.+1) (W a, B a) :=
begin
fapply is_trunc_succ, intros (w, w'),
apply (double_induction_on w w'), intros (a, a', f, f', IH),
@ -146,8 +146,8 @@ namespace W
fapply (succ_is_trunc n),
intro p, revert IH, generalize f', --change to revert after simpl
apply (path.rec_on p), intros (f', IH),
apply (@pi.trunc_path_pi FUN (B a) (λx, W B) n f f'), intro b,
apply pi.trunc_path_pi, intro b,
apply IH
end
end W
end Wtype

View file

@ -7,52 +7,116 @@ Ported from Coq HoTT
Theorems about pi-types (dependent function spaces)
-/
import ..trunc ..axioms.funext
import ..trunc ..axioms.funext .sigma
open path equiv is_equiv funext
namespace pi
universe variables l k
variables [H : funext.{l k}] {A : Type.{l}} {B : A → Type.{k}} {C : Πa, B a → Type}
variables {A A' : Type.{l}} {B : A → Type.{k}} {C : Πa, B a → Type}
{D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g h : Πa, B a}
include H
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
/- Paths -/
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f == g].
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f g].
This equivalence, however, is just the combination of [apD10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/
/- Now we show how these things compute. -/
definition equiv_apD10 : (f ≈ g) ≃ (f g) :=
definition apD10_path_pi [H : funext] (h : f g) : apD10 (path_pi h) h :=
apD10 (retr apD10 h)
definition path_pi_eta [H : funext] (p : f ≈ g) : path_pi (apD10 p) ≈ p :=
sect apD10 p
definition path_pi_idp [H : funext] : path_pi (λx : A, idpath (f x)) ≈ idpath f :=
!path_pi_eta
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
definition path_equiv_homotopy [H : funext] (f g : Πx, B x) : (f ≈ g) ≃ (f g) :=
equiv.mk _ !funext.ap
definition is_equiv_path_pi [instance] [H : funext] (f g : Πx, B x)
: is_equiv (@path_pi _ _ _ f g) :=
inv_closed apD10
definition homotopy_equiv_path [H : funext] (f g : Πx, B x) : (f g) ≃ (f ≈ g) :=
equiv.mk _ !is_equiv_path_pi
/- Transport -/
protected definition transport (p : a ≈ a') (f : Π(b : B a), C a b)
: (transport (λa, Π(b : B a), C a b) p f)
(λb, transport (C a') !transport_pV (transportD _ _ p _ (f (p⁻¹ ▹ b)))) :=
path.rec_on p (λx, idp)
/- A special case of [transport_pi] where the type [B] does not depend on [A],
and so it is just a fixed type [B]. -/
definition transport_constant {C : A → A' → Type} (p : a ≈ a') (f : Π(b : A'), C a b)
: (path.transport (λa, Π(b : A'), C a b) p f) (λb, path.transport (λa, C a b) p (f b)) :=
path.rec_on p (λx, idp)
/- Maps on paths -/
/- The action of maps given by lambda. -/
definition ap_lambdaD [H : funext] {C : A' → Type} (p : a ≈ a') (f : Πa b, C b) :
ap (λa b, f a b) p ≈ path_pi (λb, ap (λa, f a b) p) :=
begin
apply (path.rec_on p),
apply inverse,
apply path_pi_idp
end
/- Dependent paths -/
/- with more implicit arguments the conclusion of the following theorem is
(Π(b : B a), transportD B C p b (f b) ≈ g (path.transport B p b)) ≃
(path.transport (λa, Π(b : B a), C a b) p f ≈ g) -/
definition dpath_pi [H : funext] (p : a ≈ a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
: (Π(b : B a), p ▹D (f b) ≈ g (p ▹ b)) ≃ (p ▹ f ≈ g) :=
path.rec_on p (λg, !homotopy_equiv_path) g
section open sigma.ops
/- more implicit arguments:
(Π(b : B a), path.transport C (sigma.path p idp) (f b) ≈ g (p ▹ b)) ≃
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) ≈ g (path.transport B p b)) -/
definition dpath_pi_sigma {C : (Σa, B a) → Type} (p : a ≈ a')
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
(Π(b : B a), (sigma.path p idp) ▹ (f b) ≈ g (p ▹ b)) ≃ (Π(b : B a), p ▹D (f b) ≈ g (p ▹ b)) :=
path.rec_on p (λg, !equiv.refl) g
end
/- truncation -/
open truncation
definition trunc_pi [instance] (B : A → Type.{k}) (n : trunc_index)
[H : Πa, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
definition trunc_pi [instance] [H : funext.{l k}] (B : A → Type.{k}) (n : trunc_index)
[H : a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
begin
reverts (B, H),
apply (truncation.trunc_index.rec_on n),
apply (trunc_index.rec_on n),
intros (B, H),
fapply is_contr.mk,
intro a, apply center, apply H, --remove "apply H" when term synthesis works correctly
intro f, apply path_forall,
intro f, apply path_pi,
intro x, apply (contr (f x)),
intros (n, IH, B, H),
fapply is_trunc_succ, intros (f, g),
fapply trunc_equiv',
apply equiv.symm, apply equiv_apD10,
apply equiv.symm, apply path_equiv_homotopy,
apply IH,
intro a,
show is_trunc n (f a ≈ g a), from
succ_is_trunc n (f a) (g a)
end
definition trunc_path_pi [instance] (n : trunc_index) (f g : Πa, B a)
definition trunc_path_pi [instance] [H : funext.{l k}] (n : trunc_index) (f g : Πa, B a)
[H : ∀a, is_trunc n (f a ≈ g a)] : is_trunc n (f ≈ g) :=
begin
apply trunc_equiv', apply equiv.symm,
apply equiv_apD10,
apply path_equiv_homotopy,
apply trunc_pi, exact H,
end

View file

@ -15,7 +15,8 @@ variables {A A' B B' C D : Type}
namespace prod
definition eta_prod (u : A × B) : (pr₁ u , pr₂ u) ≈ u :=
-- prod.eta is already used for the eta rule for strict equality
protected definition peta (u : A × B) : (pr₁ u , pr₂ u) ≈ u :=
destruct u (λu1 u2, idp)
definition pair_path (pa : a ≈ a') (pb : b ≈ b') : (a , b) ≈ (a' , b') :=
@ -25,25 +26,22 @@ namespace prod
begin
apply (prod.rec_on u), intros (a₁, b₁),
apply (prod.rec_on v), intros (a₂, b₂, H₁, H₂),
apply (transport _ (eta_prod (a₁, b₁))),
apply (transport _ (eta_prod (a₂, b₂))),
apply (transport _ (peta (a₁, b₁))),
apply (transport _ (peta (a₂, b₂))),
apply (pair_path H₁ H₂),
end
/- Symmetry -/
definition isequiv_prod_symm [instance] (A B : Type) : is_equiv (@flip A B) :=
definition isequiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
adjointify flip
flip
(λu, destruct u (λb a, idp))
(λu, destruct u (λa b, idp))
definition equiv_prod_symm (A B : Type) : A × B ≃ B × A :=
definition symm_equiv (A B : Type) : A × B ≃ B × A :=
equiv.mk flip _
-- Pairs preserve truncatedness
definition trunc_prod [instance] {A B : Type} (n : trunc_index) :
(is_trunc n A) → (is_trunc n B) → is_trunc n (A × B)
:= sorry --Assignment for Floris
-- trunc_prod is defined in sigma
end prod

View file

@ -7,193 +7,194 @@ Ported from Coq HoTT
Theorems about sigma-types (dependent sums)
-/
import ..trunc .prod
import ..trunc .prod ..axioms.funext
open path sigma sigma.ops equiv is_equiv
namespace sigma
-- remove the ₁'s (globally)
infixr [local] ∘ := function.compose --remove
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
{D : Πa b, C a b → Type}
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
definition eta_sigma (u : Σa, B a) : ⟨u.1 , u.2⟩ ≈ u :=
-- sigma.eta is already used for the eta rule for strict equality
protected definition peta (u : Σa, B a) : ⟨u.1 , u.2⟩ ≈ u :=
destruct u (λu1 u2, idp)
definition eta2_sigma (u : Σa b, C a b) : ⟨u.1, u.2.1, u.2.2⟩ ≈ u :=
definition eta2 (u : Σa b, C a b) : ⟨u.1, u.2.1, u.2.2⟩ ≈ u :=
destruct u (λu1 u2, destruct u2 (λu21 u22, idp))
definition eta3_sigma (u : Σa b c, D a b c) : ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ ≈ u :=
definition eta3 (u : Σa b c, D a b c) : ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ ≈ u :=
destruct u (λu1 u2, destruct u2 (λu21 u22, destruct u22 (λu221 u222, idp)))
definition path_sigma_dpair (p : a ≈ a') (q : p ▹ b ≈ b') : dpair a b ≈ dpair a' b' :=
definition dpair_eq_dpair (p : a ≈ a') (q : p ▹ b ≈ b') : dpair a b ≈ dpair a' b' :=
path.rec_on p (λb b' q, path.rec_on q idp) b b' q
/- In Coq they often have to give u and v explicitly -/
definition path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : u ≈ v :=
protected definition path (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : u ≈ v :=
destruct u
(λu1 u2, destruct v (λ v1 v2, path_sigma_dpair))
(λu1 u2, destruct v (λ v1 v2, dpair_eq_dpair))
p q
/- Projections of paths from a total space -/
definition pr1_path (p : u ≈ v) : u.1 ≈ v.1 :=
definition path_pr1 (p : u ≈ v) : u.1 ≈ v.1 :=
ap dpr1 p
postfix `..1`:(max+1) := pr1_path
postfix `..1`:(max+1) := path_pr1
definition pr2_path (p : u ≈ v) : p..1 ▹ u.2 ≈ v.2 :=
definition path_pr2 (p : u ≈ v) : p..1 ▹ u.2 ≈ v.2 :=
path.rec_on p idp
--Coq uses the following proof, which only computes if u,v are dpairs AND p is idp
--(transport_compose B dpr1 p u.2)⁻¹ ⬝ apD dpr2 p
postfix `..2`:(max+1) := pr2_path
postfix `..2`:(max+1) := path_pr2
definition dpair_path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
: dpair (path_sigma p q)..1 (path_sigma p q)..2 ≈ ⟨p, q⟩ :=
definition dpair_sigma_path (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
: dpair (sigma.path p q)..1 (sigma.path p q)..2 ≈ ⟨p, q⟩ :=
begin
generalize q, generalize p,
reverts (p, q),
apply (destruct u), intros (u1, u2),
apply (destruct v), intros (v1, v2, p), generalize v2,
apply (destruct v), intros (v1, v2, p), generalize v2, --change to revert
apply (path.rec_on p), intros (v2, q),
apply (path.rec_on q), apply idp
end
definition pr1_path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : (path_sigma p q)..1 ≈ p :=
(!dpair_path_sigma)..1
definition sigma_path_pr1 (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : (sigma.path p q)..1 ≈ p :=
(!dpair_sigma_path)..1
definition pr2_path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
: pr1_path_sigma p q ▹ (path_sigma p q)..2 ≈ q :=
(!dpair_path_sigma)..2
definition sigma_path_pr2 (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
: sigma_path_pr1 p q ▹ (sigma.path p q)..2 ≈ q :=
(!dpair_sigma_path)..2
definition eta_path_sigma (p : u ≈ v) : path_sigma (p..1) (p..2) ≈ p :=
definition sigma_path_eta (p : u ≈ v) : sigma.path (p..1) (p..2) ≈ p :=
begin
apply (path.rec_on p),
apply (destruct u), intros (u1, u2),
apply idp
end
definition transport_pr1_path_sigma {B' : A → Type} (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
: transport (λx, B' x.1) (path_sigma p q) ≈ transport B' p :=
definition transport_dpr1_sigma_path {B' : A → Type} (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
: transport (λx, B' x.1) (sigma.path p q) ≈ transport B' p :=
begin
generalize q, generalize p,
reverts (p, q),
apply (destruct u), intros (u1, u2),
apply (destruct v), intros (v1, v2, p), generalize v2,
apply (path.rec_on p), intros (v2, q),
apply (path.rec_on q), apply idp
end
/- the uncurried version of path_sigma. We will prove that this is an equivalence -/
/- the uncurried version of sigma_path. We will prove that this is an equivalence -/
definition path_sigma_uncurried (pq : Σ(p : dpr1 u ≈ dpr1 v), p ▹ (dpr2 u) ≈ dpr2 v) : u ≈ v :=
destruct pq path_sigma
definition sigma_path_uncurried (pq : Σ(p : dpr1 u ≈ dpr1 v), p ▹ (dpr2 u) ≈ dpr2 v) : u ≈ v :=
destruct pq sigma.path
definition dpair_path_sigma_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: dpair (path_sigma_uncurried pq)..1 (path_sigma_uncurried pq)..2 ≈ pq :=
destruct pq dpair_path_sigma
definition dpair_sigma_path_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: dpair (sigma_path_uncurried pq)..1 (sigma_path_uncurried pq)..2 ≈ pq :=
destruct pq dpair_sigma_path
definition pr1_path_sigma_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: (path_sigma_uncurried pq)..1 ≈ pq.1 :=
(!dpair_path_sigma_uncurried)..1
definition sigma_path_pr1_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: (sigma_path_uncurried pq)..1 ≈ pq.1 :=
(!dpair_sigma_path_uncurried)..1
definition pr2_path_sigma_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: (pr1_path_sigma_uncurried pq) ▹ (path_sigma_uncurried pq)..2 ≈ pq.2 :=
(!dpair_path_sigma_uncurried)..2
definition sigma_path_pr2_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: (sigma_path_pr1_uncurried pq) ▹ (sigma_path_uncurried pq)..2 ≈ pq.2 :=
(!dpair_sigma_path_uncurried)..2
definition eta_path_sigma_uncurried (p : u ≈ v) : path_sigma_uncurried (dpair p..1 p..2) ≈ p :=
!eta_path_sigma
definition sigma_path_eta_uncurried (p : u ≈ v) : sigma_path_uncurried (dpair p..1 p..2) ≈ p :=
!sigma_path_eta
definition transport_pr1_path_sigma_uncurried {B' : A → Type} (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: transport (λx, B' x.1) (@path_sigma_uncurried A B u v pq) ≈ transport B' pq.1 :=
destruct pq transport_pr1_path_sigma
definition transport_sigma_path_dpr1_uncurried {B' : A → Type}
(pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
: transport (λx, B' x.1) (@sigma_path_uncurried A B u v pq) ≈ transport B' pq.1 :=
destruct pq transport_dpr1_sigma_path
definition isequiv_path_sigma /-[instance]-/ (u v : Σa, B a)
: is_equiv (@path_sigma_uncurried A B u v) :=
adjointify path_sigma_uncurried
definition is_equiv_sigma_path [instance] (u v : Σa, B a)
: is_equiv (@sigma_path_uncurried A B u v) :=
adjointify sigma_path_uncurried
(λp, ⟨p..1, p..2⟩)
eta_path_sigma_uncurried
dpair_path_sigma_uncurried
sigma_path_eta_uncurried
dpair_sigma_path_uncurried
definition equiv_path_sigma (u v : Σa, B a) : (Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2) ≃ (u ≈ v) :=
equiv.mk path_sigma_uncurried !isequiv_path_sigma
definition equiv_sigma_path (u v : Σa, B a) : (Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2) ≃ (u ≈ v) :=
equiv.mk sigma_path_uncurried !is_equiv_sigma_path
definition path_sigma_dpair_pp_pp (p1 : a ≈ a' ) (q1 : p1 ▹ b ≈ b' )
(p2 : a' ≈ a'') (q2 : p2 ▹ b' ≈ b'') :
path_sigma_dpair (p1 ⬝ p2) (transport_pp B p1 p2 b ⬝ ap (transport B p2) q1 ⬝ q2)
path_sigma_dpair p1 q1 ⬝ path_sigma_dpair p2 q2 :=
definition dpair_eq_dpair_pp_pp (p1 : a ≈ a' ) (q1 : p1 ▹ b ≈ b' )
(p2 : a' ≈ a'') (q2 : p2 ▹ b' ≈ b'') :
dpair_eq_dpair (p1 ⬝ p2) (transport_pp B p1 p2 b ⬝ ap (transport B p2) q1 ⬝ q2)
dpair_eq_dpair p1 q1 ⬝ dpair_eq_dpair p2 q2 :=
begin
generalize q2, generalize q1, generalize b'', generalize p2, generalize b',
reverts (b', p2, b'', q1, q2),
apply (path.rec_on p1), intros (b', p2),
apply (path.rec_on p2), intros (b'', q1),
apply (path.rec_on q1), intro q2,
apply (path.rec_on q2), apply idp
end
definition path_sigma_pp_pp (p1 : u.1 ≈ v.1) (q1 : p1 ▹ u.2 ≈ v.2)
definition sigma_path_pp_pp (p1 : u.1 ≈ v.1) (q1 : p1 ▹ u.2 ≈ v.2)
(p2 : v.1 ≈ w.1) (q2 : p2 ▹ v.2 ≈ w.2) :
path_sigma (p1 ⬝ p2) (transport_pp B p1 p2 u.2 ⬝ ap (transport B p2) q1 ⬝ q2)
path_sigma p1 q1 ⬝ path_sigma p2 q2 :=
sigma.path (p1 ⬝ p2) (transport_pp B p1 p2 u.2 ⬝ ap (transport B p2) q1 ⬝ q2)
sigma.path p1 q1 ⬝ sigma.path p2 q2 :=
begin
generalize q2, generalize p2, generalize q1, generalize p1,
reverts (p1, q1, p2, q2),
apply (destruct u), intros (u1, u2),
apply (destruct v), intros (v1, v2),
apply (destruct w), intros,
apply path_sigma_dpair_pp_pp
apply dpair_eq_dpair_pp_pp
end
definition path_sigma_dpair_p1_1p (p : a ≈ a') (q : p ▹ b ≈ b') :
path_sigma_dpair p q ≈ path_sigma_dpair p idp ⬝ path_sigma_dpair idp q :=
definition dpair_eq_dpair_p1_1p (p : a ≈ a') (q : p ▹ b ≈ b') :
dpair_eq_dpair p q ≈ dpair_eq_dpair p idp ⬝ dpair_eq_dpair idp q :=
begin
generalize q, generalize b',
reverts (b', q),
apply (path.rec_on p), intros (b', q),
apply (path.rec_on q), apply idp
end
/- pr1_path commutes with the groupoid structure. -/
/- path_pr1 commutes with the groupoid structure. -/
definition pr1_path_1 (u : Σa, B a) : (idpath u)..1 ≈ idpath (u.1) := idp
definition pr1_path_pp (p : u ≈ v) (q : v ≈ w) : (p ⬝ q) ..1 ≈ (p..1) ⬝ (q..1) := !ap_pp
definition pr1_path_V (p : u ≈ v) : p⁻¹ ..1 ≈ (p..1)⁻¹ := !ap_V
definition path_pr1_idp (u : Σa, B a) : (idpath u)..1 ≈ idpath (u.1) := idp
definition path_pr1_pp (p : u ≈ v) (q : v ≈ w) : (p ⬝ q) ..1 ≈ (p..1) ⬝ (q..1) := !ap_pp
definition path_pr1_V (p : u ≈ v) : p⁻¹ ..1 ≈ (p..1)⁻¹ := !ap_V
/- Applying dpair to one argument is the same as path_sigma_dpair with reflexivity in the first place. -/
/- Applying dpair to one argument is the same as dpair_eq_dpair with reflexivity in the first place. -/
definition ap_dpair (q : b₁ ≈ b₂) : ap (dpair a) q ≈ path_sigma_dpair idp q :=
definition ap_dpair (q : b₁ ≈ b₂) : ap (dpair a) q ≈ dpair_eq_dpair idp q :=
path.rec_on q idp
/- Dependent transport is the same as transport along a path_sigma. -/
/- Dependent transport is the same as transport along a sigma_path. -/
definition transportD_is_transport (p : a ≈ a') (c : C a b) :
p ▹D c ≈ transport (λu, C (u.1) (u.2)) (path_sigma_dpair p idp) c :=
definition transportD_eq_transport (p : a ≈ a') (c : C a b) :
p ▹D c ≈ transport (λu, C (u.1) (u.2)) (dpair_eq_dpair p idp) c :=
path.rec_on p idp
definition path_path_sigma_path_sigma {p1 q1 : a ≈ a'} {p2 : p1 ▹ b ≈ b'} {q2 : q1 ▹ b ≈ b'}
(r : p1 ≈ q1) (s : r ▹ p2 ≈ q2) : path_sigma p1 p2 ≈ path_sigma q1 q2 :=
definition sigma_path_eq_sigma_path {p1 q1 : a ≈ a'} {p2 : p1 ▹ b ≈ b'} {q2 : q1 ▹ b ≈ b'}
(r : p1 ≈ q1) (s : r ▹ p2 ≈ q2) : sigma.path p1 p2 ≈ sigma.path q1 q2 :=
path.rec_on r
proof (λq2 s, path.rec_on s idp) qed
q2
s
-- begin
-- generalize s, generalize q2,
-- reverts (q2, s),
-- apply (path.rec_on r), intros (q2, s),
-- apply (path.rec_on s), apply idp
-- end
/- A path between paths in a total space is commonly shown component wise. -/
definition path_path_sigma {p q : u ≈ v} (r : p..1 ≈ q..1) (s : r ▹ p..2 ≈ q..2) : p ≈ q :=
definition path_sigma_path {p q : u ≈ v} (r : p..1 ≈ q..1) (s : r ▹ p..2 ≈ q..2) : p ≈ q :=
begin
generalize s, generalize r, generalize q,
reverts (q, r, s),
apply (path.rec_on p),
apply (destruct u), intros (u1, u2, q, r, s),
apply concat, rotate 1,
apply eta_path_sigma,
apply (path_path_sigma_path_sigma r s)
apply sigma_path_eta,
apply (sigma_path_eq_sigma_path r s)
end
/- In Coq they often have to give u and v explicitly when using the following definition -/
definition path_path_sigma_uncurried {p q : u ≈ v}
definition path_sigma_path_uncurried {p q : u ≈ v}
(rs : Σ(r : p..1 ≈ q..1), transport (λx, transport B x u.2 ≈ v.2) r p..2 ≈ q..2) : p ≈ q :=
destruct rs path_path_sigma
destruct rs path_sigma_path
/- Transport -/
@ -201,8 +202,8 @@ namespace sigma
In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/
definition transport_sigma (p : a ≈ a') (bc : Σ(b : B a), C a b) : p ▹ bc ≈ ⟨p ▹ bc.1, p ▹D bc.2⟩
:=
definition transport_eq (p : a ≈ a') (bc : Σ(b : B a), C a b)
: p ▹ bc ≈ ⟨p ▹ bc.1, p ▹D bc.2⟩ :=
begin
apply (path.rec_on p),
apply (destruct bc), intros (b, c),
@ -210,7 +211,7 @@ namespace sigma
end
/- The special case when the second variable doesn't depend on the first is simpler. -/
definition transport_sigma' {B : Type} {C : A → B → Type} (p : a ≈ a') (bc : Σ(b : B), C a b)
definition transport_eq_deg {B : Type} {C : A → B → Type} (p : a ≈ a') (bc : Σ(b : B), C a b)
: p ▹ bc ≈ ⟨bc.1, p ▹ bc.2⟩ :=
begin
apply (path.rec_on p),
@ -218,12 +219,12 @@ namespace sigma
apply idp
end
/- Or if the second variable contains a first component that doesn't depend on the first. Need to think about the naming of these. -/
/- Or if the second variable contains a first component that doesn't depend on the first. -/
definition transport_sigma_' {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a ≈ a')
definition transport_eq_4deg {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a ≈ a')
(bcd : Σ(b : B a) (c : C a), D a b c) : p ▹ bcd ≈ ⟨p ▹ bcd.1, p ▹ bcd.2.1, p ▹D2 bcd.2.2⟩ :=
begin
generalize bcd,
revert bcd,
apply (path.rec_on p), intro bcd,
apply (destruct bcd), intros (b, cd),
apply (destruct cd), intros (c, d),
@ -233,58 +234,117 @@ namespace sigma
/- Functorial action -/
variables (f : A → A') (g : Πa, B a → B' (f a))
definition functor_sigma (u : Σa, B a) : Σa', B' a' :=
protected definition functor (u : Σa, B a) : Σa', B' a' :=
⟨f u.1, g u.1 u.2⟩
/- Equivalences -/
--remove explicit arguments of IsEquiv
definition isequiv_functor_sigma [H1 : is_equiv f] [H2 : Π a, @is_equiv (B a) (B' (f a)) (g a)]
: is_equiv (functor_sigma f g) :=
/-adjointify (functor_sigma f g)
(functor_sigma (f⁻¹) (λ(x : A') (y : B' x), ((g (f⁻¹ x))⁻¹ ((retr f x)⁻¹ ▹ y))))
sorry-/
sorry
--TODO: remove explicit arguments of is_equiv
definition is_equiv_functor [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
: is_equiv (functor f g) :=
adjointify (functor f g)
(functor (f⁻¹) (λ(a' : A') (b' : B' a'),
((g (f⁻¹ a'))⁻¹ (transport B' (retr f a'⁻¹) b'))))
begin
intro u',
apply (destruct u'), intros (a', b'),
apply (sigma.path (retr f a')),
-- "rewrite retr (g (f⁻¹ a'))"
apply concat, apply (ap (λx, (transport B' (retr f a') x))), apply (retr (g (f⁻¹ a'))),
show retr f a' ▹ (((retr f a') ⁻¹) ▹ b') ≈ b',
from transport_pV B' (retr f a') b'
end
begin
intro u,
apply (destruct u), intros (a, b),
apply (sigma.path (sect f a)),
show transport B (sect f a) (g (f⁻¹ (f a))⁻¹ (transport B' (retr f (f a)⁻¹) (g a b))) ≈ b,
from calc
transport B (sect f a) (g (f⁻¹ (f a))⁻¹ (transport B' (retr f (f a)⁻¹) (g a b)))
≈ g a⁻¹ (transport (B' ∘ f) (sect f a) (transport B' (retr f (f a)⁻¹) (g a b)))
: ap_transport (sect f a) (λ a, g a⁻¹)
... ≈ g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (retr f (f a)⁻¹) (g a b)))
: ap (g a⁻¹) !transport_compose
... ≈ g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (ap f (sect f a)⁻¹) (g a b)))
: ap (λ x, g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (x⁻¹) (g a b)))) (adj f a)
... ≈ g a⁻¹ (g a b) : transport_pV
... ≈ b : sect (g a) b
end
-- -- "rewrite ap_transport"
-- apply concat, apply inverse, apply (ap_transport (sect f a) (λ a, g a⁻¹)),
-- apply concat, apply (ap (g a⁻¹)),
-- -- "rewrite transport_compose"
-- apply concat, apply transport_compose,
-- -- "rewrite adj"
-- -- "rewrite transport_pV"
-- apply sect,
definition equiv_functor_sigma [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] : (Σa, B a) ≃ (Σa', B' a') :=
equiv.mk (functor_sigma f g) !isequiv_functor_sigma
definition equiv_functor_of_is_equiv [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
: (Σa, B a) ≃ (Σa', B' a') :=
equiv.mk (functor f g) !is_equiv_functor
context --remove
irreducible inv function.compose --remove
definition equiv_functor_sigma' (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) :
definition equiv_functor (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) :
(Σa, B a) ≃ (Σa', B' a') :=
equiv_functor_sigma (to_fun Hf) (λ a, to_fun (Hg a))
equiv_functor_of_is_equiv (to_fun Hf) (λ a, to_fun (Hg a))
end --remove
definition equiv_functor_id {B' : A → Type} (Hg : Π a, B a ≃ B' a) : (Σa, B a) ≃ Σa, B' a :=
equiv_functor equiv.refl Hg
definition ap_functor_sigma_dpair (p : a ≈ a') (q : p ▹ b ≈ b')
: ap (sigma.functor f g) (sigma.path p q)
≈ sigma.path (ap f p)
(transport_compose _ f p (g a b)⁻¹ ⬝ ap_transport p g b⁻¹ ⬝ ap (g a') q) :=
begin
reverts (b', q),
apply (path.rec_on p),
intros (b', q), apply (path.rec_on q),
apply idp
end
definition ap_functor_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
: ap (sigma.functor f g) (sigma.path p q)
≈ sigma.path (ap f p)
(transport_compose B' f p (g u.1 u.2)⁻¹ ⬝ ap_transport p g u.2⁻¹ ⬝ ap (g v.1) q) :=
begin
reverts (p, q),
apply (destruct u), intros (a, b),
apply (destruct v), intros (a', b', p, q),
apply ap_functor_sigma_dpair
end
/- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/
open truncation
definition isequiv_pr1_contr [instance] (B : A → Type) [H : Π a, is_contr (B a)]
definition is_equiv_dpr1 [instance] (B : A → Type) [H : Π a, is_contr (B a)]
: is_equiv (@dpr1 A B) :=
adjointify dpr1
(λa, ⟨a, !center⟩)
(λa, idp)
(λu, path_sigma idp !contr)
(λu, sigma.path idp !contr)
definition equiv_sigma_contr [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A :=
definition equiv_of_all_contr [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A :=
equiv.mk dpr1 _
/- definition 3.11.9(ii): Dually, summing up over a contractible type does nothing. -/
definition equiv_contr_sigma (B : A → Type) [H : is_contr A] : (Σa, B a) ≃ B (center A) :=
definition equiv_center_of_contr (B : A → Type) [H : is_contr A] : (Σa, B a) ≃ B (center A)
:=
equiv.mk _ (adjointify
(λu, contr u.1⁻¹ ▹ u.2)
(λb, ⟨!center, b⟩)
(λb, ap (λx, x ▹ b) !path2_contr)
(λu, path_sigma !contr !transport_pV))
(λu, sigma.path !contr !transport_pV))
/- Associativity -/
--this proof is harder here than in Coq because we don't have eta definitionally for sigma
definition equiv_sigma_assoc (C : (Σa, B a) → Type) : (Σa b, C ⟨a,b⟩) ≃ (Σu, C u) :=
--this proof is harder than in Coq because we don't have eta definitionally for sigma
protected definition assoc_equiv (C : (Σa, B a) → Type) : (Σa b, C ⟨a, b⟩) ≃ (Σu, C u) :=
-- begin
-- apply Equiv.mk,
-- apply equiv.mk,
-- apply (adjointify (λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
-- (λuc, ⟨uc.1.1, uc.1.2, !eta_sigma⁻¹ ▹ uc.2⟩)),
-- (λuc, ⟨uc.1.1, uc.1.2, !peta⁻¹ ▹ uc.2⟩)),
-- intro uc, apply (destruct uc), intro u,
-- apply (destruct u), intros (a, b, c),
-- apply idp,
@ -294,64 +354,121 @@ namespace sigma
-- end
equiv.mk _ (adjointify
(λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
(λuc, ⟨uc.1.1, uc.1.2, !eta_sigma⁻¹ ▹ uc.2⟩)
(λuc, ⟨uc.1.1, uc.1.2, !peta⁻¹ ▹ uc.2⟩)
proof (λuc, destruct uc (λu, destruct u (λa b c, idp))) qed
proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed)
open prod
definition equiv_sigma_prod (C : (A × A') → Type) : (Σa a', C (a,a')) ≃ (Σu, C u) :=
definition assoc_equiv_prod (C : (A × A') → Type) : (Σa a', C (a,a')) ≃ (Σu, C u) :=
equiv.mk _ (adjointify
(λav, ⟨(av.1, av.2.1), av.2.2⟩)
(λuc, ⟨pr₁ (uc.1), pr₂ (uc.1), !eta_prod⁻¹ ▹ uc.2⟩)
(λuc, ⟨pr₁ (uc.1), pr₂ (uc.1), !prod.peta⁻¹ ▹ uc.2⟩)
proof (λuc, destruct uc (λu, prod.destruct u (λa b c, idp))) qed
proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed)
/- Symmetry -/
-- if this breaks, replace "Equiv.id" by "proof Equiv.id qed"
definition equiv_sigma_symm_prod (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) :=
definition symm_equiv_uncurried (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) :=
calc
(Σa a', C (a, a')) ≃ Σu, C u : equiv_sigma_prod
... ≃ Σv, C (flip v) : equiv_functor_sigma' !equiv_prod_symm
(Σa a', C (a, a')) ≃ Σu, C u : assoc_equiv_prod
... ≃ Σv, C (flip v) : equiv_functor !prod.symm_equiv
(λu, prod.destruct u (λa a', equiv.refl))
... ≃ (Σa' a, C (a, a')) : equiv_sigma_prod
... ≃ (Σa' a, C (a, a')) : assoc_equiv_prod
definition equiv_sigma_symm (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') :=
sigma.equiv_sigma_symm_prod (λu, C (pr1 u) (pr2 u))
definition symm_equiv (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') :=
symm_equiv_uncurried (λu, C (pr1 u) (pr2 u))
definition equiv_sigma0_prod (A B : Type) : (Σ(a : A), B) ≃ A × B :=
definition equiv_prod (A B : Type) : (Σ(a : A), B) ≃ A × B :=
equiv.mk _ (adjointify
(λs, (s.1, s.2))
(λp, ⟨pr₁ p, pr₂ p⟩)
proof (λp, prod.destruct p (λa b, idp)) qed
proof (λs, destruct s (λa b, idp)) qed)
definition equiv_sigma_symm0 (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A :=
definition symm_equiv_deg (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A :=
calc
(Σ(a : A), B) ≃ A × B : equiv_sigma0_prod
... ≃ B × A : equiv_prod_symm
... ≃ Σ(b : B), A : equiv_sigma0_prod
(Σ(a : A), B) ≃ A × B : equiv_prod
... ≃ B × A : prod.symm_equiv
... ≃ Σ(b : B), A : equiv_prod
/- ** Universal mapping properties -/
/- *** The positive universal property. -/
section
open funext
--in Coq this can be done without function extensionality
definition is_equiv_sigma_rec [instance] [FUN : funext] (C : (Σa, B a) → Type)
: is_equiv (@sigma.rec _ _ C) :=
adjointify _ (λ g a b, g ⟨a, b⟩)
(λ g, proof path_pi (λu, destruct u (λa b, idp)) qed)
(λ f, idpath f)
definition equiv_sigma_rec [FUN : funext] (C : (Σa, B a) → Type)
: (Π(a : A) (b: B a), C ⟨a, b⟩) ≃ (Πxy, C xy) :=
equiv.mk sigma.rec _
/- *** The negative universal property. -/
definition coind_uncurried (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A) : Σ(b : B a), C a b
:= ⟨fg.1 a, fg.2 a⟩
definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b :=
coind_uncurried ⟨f, g⟩ a
--is the instance below dangerous?
--in Coq this can be done without function extensionality
definition is_equiv_coind [instance] [FUN : funext] (C : Πa, B a → Type)
: is_equiv (@coind_uncurried _ _ C) :=
adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩)
(λ h, proof path_pi (λu, !peta) qed)
(λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed))
definition equiv_coind [FUN : funext] : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) :=
equiv.mk coind_uncurried _
end
/- ** Subtypes (sigma types whose second components are hprops) -/
/- To prove equality in a subtype, we only need equality of the first component. -/
definition path_hprop [H : Πa, is_hprop (B a)] (u v : Σa, B a) : u.1 ≈ v.1 → u ≈ v :=
(sigma_path_uncurried ∘ (@inv _ _ dpr1 (@is_equiv_dpr1 _ _ (λp, !succ_is_trunc))))
definition is_equiv_path_hprop [instance] [H : Πa, is_hprop (B a)] (u v : Σa, B a)
: is_equiv (path_hprop u v) :=
!is_equiv.compose
definition equiv_path_hprop [H : Πa, is_hprop (B a)] (u v : Σa, B a) : (u.1 ≈ v.1) ≃ (u ≈ v)
:=
equiv.mk !path_hprop _
/- truncatedness -/
definition trunc_sigma [instance] (B : A → Type) (n : trunc_index)
[HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) :=
begin
begin
reverts (A, B, HA, HB),
apply (truncation.trunc_index.rec_on n),
apply (trunc_index.rec_on n),
intros (A, B, HA, HB),
fapply trunc_equiv',
apply equiv.symm,
apply equiv_contr_sigma, apply HA, --should be solved by term synthesis
apply equiv_center_of_contr, apply HA, --should be solved by term synthesis
apply HB,
intros (n, IH, A, B, HA, HB),
fapply is_trunc_succ, intros (u, v),
fapply trunc_equiv',
apply equiv_path_sigma,
apply equiv_sigma_path,
apply IH,
apply (succ_is_trunc n),
apply succ_is_trunc, assumption,
intro p,
show is_trunc n (p ▹ u .2 ≈ v .2), from
succ_is_trunc n (p ▹ u.2) (v.2),
end
end
end sigma
open truncation sigma
namespace prod
/- truncatedness -/
definition trunc_prod [instance] (A B : Type) (n : trunc_index)
[HA : is_trunc n A] [HB : is_trunc n B] : is_trunc n (A × B) :=
trunc_equiv' n !equiv_prod
end prod