feat(library/hott): multiple changes in the HoTT library
Jakob accidentally undid some of my changes in commit aad4592
, reverted that;
made style changes in multiple files;
in types/sigma: finished porting Coq-HoTT, and finished unfinished proof;
in axioms/funext: rename path_forall, make arguments implicit and make instance visible
This commit is contained in:
parent
5278f70dea
commit
fec45abda5
10 changed files with 893 additions and 723 deletions
|
@ -6,7 +6,7 @@
|
||||||
|
|
||||||
|
|
||||||
import .natural_transformation hott.path
|
import .natural_transformation hott.path
|
||||||
import data.unit data.sigma data.prod data.empty data.bool hott.types.prod
|
import data.unit data.sigma data.prod data.empty data.bool hott.types.prod hott.types.sigma
|
||||||
|
|
||||||
open path prod eq eq.ops
|
open path prod eq eq.ops
|
||||||
|
|
||||||
|
@ -94,7 +94,7 @@ namespace precategory
|
||||||
definition prod_precategory {obC obD : Type} (C : precategory obC) (D : precategory obD)
|
definition prod_precategory {obC obD : Type} (C : precategory obC) (D : precategory obD)
|
||||||
: precategory (obC × obD) :=
|
: precategory (obC × obD) :=
|
||||||
mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
mk (λ a b, hom (pr1 a) (pr1 b) × hom (pr2 a) (pr2 b))
|
||||||
(λ a b, trunc_prod nat.zero (!homH) (!homH))
|
(λ a b, !trunc_prod)
|
||||||
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
|
(λ a b c g f, (pr1 g ∘ pr1 f , pr2 g ∘ pr2 f) )
|
||||||
(λ a, (id, id))
|
(λ a, (id, id))
|
||||||
(λ a b c d h g f, pair_path !assoc !assoc )
|
(λ a b c d h g f, pair_path !assoc !assoc )
|
||||||
|
|
|
@ -16,20 +16,19 @@ inductive funext [class] : Type :=
|
||||||
|
|
||||||
namespace funext
|
namespace funext
|
||||||
|
|
||||||
context
|
|
||||||
universe variables l k
|
universe variables l k
|
||||||
parameters [F : funext.{l k}] {A : Type.{l}} {P : A → Type.{k}} (f g : Π x, P x)
|
variables [F : funext.{l k}] {A : Type.{l}} {P : A → Type.{k}}
|
||||||
|
|
||||||
protected definition ap [instance] : is_equiv (@apD10 A P f g) :=
|
include F
|
||||||
|
protected definition ap [instance] (f g : Π x, P x) : is_equiv (@apD10 A P f g) :=
|
||||||
rec_on F (λ(H : Π A P f g, _), !H)
|
rec_on F (λ(H : Π A P f g, _), !H)
|
||||||
|
|
||||||
definition path_forall : f ∼ g → f ≈ g :=
|
definition path_pi {f g : Π x, P x} : f ∼ g → f ≈ g :=
|
||||||
@is_equiv.inv _ _ (@apD10 A P f g) ap
|
is_equiv.inv (@apD10 A P f g)
|
||||||
|
|
||||||
end
|
omit F
|
||||||
|
definition path_pi2 [F : funext] {A B : Type} {P : A → B → Type}
|
||||||
definition path_forall2 [F : funext] {A B : Type} {P : A → B → Type}
|
|
||||||
(f g : Πx y, P x y) : (Πx y, f x y ≈ g x y) → f ≈ g :=
|
(f g : Πx y, P x y) : (Πx y, f x y ≈ g x y) → f ≈ g :=
|
||||||
λ E, path_forall f g (λx, path_forall (f x) (g x) (E x))
|
λ E, path_pi (λx, path_pi (E x))
|
||||||
|
|
||||||
end funext
|
end funext
|
||||||
|
|
|
@ -30,7 +30,7 @@ namespace is_equiv
|
||||||
variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B}
|
variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B}
|
||||||
|
|
||||||
-- The identity function is an equivalence.
|
-- The identity function is an equivalence.
|
||||||
protected definition id_is_equiv : (@is_equiv A A id) := is_equiv.mk id (λa, idp) (λa, idp) (λa, idp)
|
definition id_is_equiv : (@is_equiv A A id) := is_equiv.mk id (λa, idp) (λa, idp) (λa, idp)
|
||||||
|
|
||||||
-- The composition of two equivalences is, again, an equivalence.
|
-- The composition of two equivalences is, again, an equivalence.
|
||||||
protected definition compose [Hf : is_equiv f] [Hg : is_equiv g] : (is_equiv (g ∘ f)) :=
|
protected definition compose [Hf : is_equiv f] [Hg : is_equiv g] : (is_equiv (g ∘ f)) :=
|
||||||
|
|
|
@ -18,15 +18,15 @@ namespace is_equiv
|
||||||
definition precomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
definition precomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
||||||
: is_equiv (precomp f C) :=
|
: is_equiv (precomp f C) :=
|
||||||
adjointify (precomp f C) (λh, h ∘ f⁻¹)
|
adjointify (precomp f C) (λh, h ∘ f⁻¹)
|
||||||
(λh, path_forall _ _ (λx, ap h (sect f x)))
|
(λh, path_pi (λx, ap h (sect f x)))
|
||||||
(λg, path_forall _ _ (λy, ap g (retr f y)))
|
(λg, path_pi (λy, ap g (retr f y)))
|
||||||
|
|
||||||
--Postcomposing with an equivalence is an equivalence
|
--Postcomposing with an equivalence is an equivalence
|
||||||
definition postcomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
definition postcomp_closed [instance] {A B : Type} (f : A → B) [F : funext] [Hf : is_equiv f] (C : Type)
|
||||||
: is_equiv (postcomp f C) :=
|
: is_equiv (postcomp f C) :=
|
||||||
adjointify (postcomp f C) (λl, f⁻¹ ∘ l)
|
adjointify (postcomp f C) (λl, f⁻¹ ∘ l)
|
||||||
(λh, path_forall _ _ (λx, retr f (h x)))
|
(λh, path_pi (λx, retr f (h x)))
|
||||||
(λg, path_forall _ _ (λy, sect f (g y)))
|
(λg, path_pi (λy, sect f (g y)))
|
||||||
|
|
||||||
--Conversely, if pre- or post-composing with a function is always an equivalence,
|
--Conversely, if pre- or post-composing with a function is always an equivalence,
|
||||||
--then that function is also an equivalence. It's convenient to know
|
--then that function is also an equivalence. It's convenient to know
|
||||||
|
|
|
@ -19,162 +19,158 @@ inductive path.{l} {A : Type.{l}} (a : A) : A → Type.{l} :=
|
||||||
idpath : path a a
|
idpath : path a a
|
||||||
|
|
||||||
namespace path
|
namespace path
|
||||||
|
variables {A B C : Type} {P : A → Type} {x y z t : A}
|
||||||
|
|
||||||
notation a ≈ b := path a b
|
notation a ≈ b := path a b
|
||||||
notation x ≈ y `:>`:50 A:49 := @path A x y
|
notation x ≈ y `:>`:50 A:49 := @path A x y
|
||||||
definition idp {A : Type} {a : A} := idpath a
|
definition idp {a : A} := idpath a
|
||||||
|
|
||||||
-- unbased path induction
|
-- unbased path induction
|
||||||
definition rec' [reducible] {A : Type} {P : Π (a b : A), (a ≈ b) -> Type}
|
definition rec' [reducible] {P : Π (a b : A), (a ≈ b) -> Type}
|
||||||
(H : Π (a : A), P a a idp) {a b : A} (p : a ≈ b) : P a b p :=
|
(H : Π (a : A), P a a idp) {a b : A} (p : a ≈ b) : P a b p :=
|
||||||
path.rec (H a) p
|
path.rec (H a) p
|
||||||
|
|
||||||
definition rec_on' [reducible] {A : Type} {P : Π (a b : A), (a ≈ b) -> Type} {a b : A} (p : a ≈ b)
|
definition rec_on' [reducible] {P : Π (a b : A), (a ≈ b) -> Type} {a b : A} (p : a ≈ b)
|
||||||
(H : Π (a : A), P a a idp) : P a b p :=
|
(H : Π (a : A), P a a idp) : P a b p :=
|
||||||
path.rec (H a) p
|
path.rec (H a) p
|
||||||
|
|
||||||
-- Concatenation and inverse
|
-- Concatenation and inverse
|
||||||
-- -------------------------
|
-- -------------------------
|
||||||
|
|
||||||
definition concat {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : x ≈ z :=
|
definition concat (p : x ≈ y) (q : y ≈ z) : x ≈ z :=
|
||||||
path.rec (λu, u) q p
|
path.rec (λu, u) q p
|
||||||
|
|
||||||
definition inverse {A : Type} {x y : A} (p : x ≈ y) : y ≈ x :=
|
definition inverse (p : x ≈ y) : y ≈ x :=
|
||||||
path.rec (idpath x) p
|
path.rec (idpath x) p
|
||||||
|
|
||||||
notation p₁ ⬝ p₂ := concat p₁ p₂
|
notation p₁ ⬝ p₂ := concat p₁ p₂
|
||||||
notation p ⁻¹ := inverse p
|
notation p ⁻¹ := inverse p
|
||||||
|
|
||||||
-- In Coq, these are not needed, because concat and inv are kept transparent
|
|
||||||
-- definition inv_1 {A : Type} (x : A) : (idpath x)⁻¹ ≈ idpath x := idp
|
|
||||||
|
|
||||||
-- definition concat_11 {A : Type} (x : A) : idpath x ⬝ idpath x ≈ idpath x := idp
|
|
||||||
|
|
||||||
|
|
||||||
-- The 1-dimensional groupoid structure
|
-- The 1-dimensional groupoid structure
|
||||||
-- ------------------------------------
|
-- ------------------------------------
|
||||||
|
|
||||||
-- The identity path is a right unit.
|
-- The identity path is a right unit.
|
||||||
definition concat_p1 {A : Type} {x y : A} (p : x ≈ y) : p ⬝ idp ≈ p :=
|
definition concat_p1 (p : x ≈ y) : p ⬝ idp ≈ p :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- The identity path is a right unit.
|
-- The identity path is a right unit.
|
||||||
definition concat_1p {A : Type} {x y : A} (p : x ≈ y) : idp ⬝ p ≈ p :=
|
definition concat_1p (p : x ≈ y) : idp ⬝ p ≈ p :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- Concatenation is associative.
|
-- Concatenation is associative.
|
||||||
definition concat_p_pp {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
definition concat_p_pp (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
||||||
p ⬝ (q ⬝ r) ≈ (p ⬝ q) ⬝ r :=
|
p ⬝ (q ⬝ r) ≈ (p ⬝ q) ⬝ r :=
|
||||||
rec_on r (rec_on q idp)
|
rec_on r (rec_on q idp)
|
||||||
|
|
||||||
definition concat_pp_p {A : Type} {x y z t : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
definition concat_pp_p (p : x ≈ y) (q : y ≈ z) (r : z ≈ t) :
|
||||||
(p ⬝ q) ⬝ r ≈ p ⬝ (q ⬝ r) :=
|
(p ⬝ q) ⬝ r ≈ p ⬝ (q ⬝ r) :=
|
||||||
rec_on r (rec_on q idp)
|
rec_on r (rec_on q idp)
|
||||||
|
|
||||||
-- The left inverse law.
|
-- The left inverse law.
|
||||||
definition concat_pV {A : Type} {x y : A} (p : x ≈ y) : p ⬝ p⁻¹ ≈ idp :=
|
definition concat_pV (p : x ≈ y) : p ⬝ p⁻¹ ≈ idp :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- The right inverse law.
|
-- The right inverse law.
|
||||||
definition concat_Vp {A : Type} {x y : A} (p : x ≈ y) : p⁻¹ ⬝ p ≈ idp :=
|
definition concat_Vp (p : x ≈ y) : p⁻¹ ⬝ p ≈ idp :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
|
-- Several auxiliary theorems about canceling inverses across associativity. These are somewhat
|
||||||
-- redundant, following from earlier theorems.
|
-- redundant, following from earlier theorems.
|
||||||
|
|
||||||
definition concat_V_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : p⁻¹ ⬝ (p ⬝ q) ≈ q :=
|
definition concat_V_pp (p : x ≈ y) (q : y ≈ z) : p⁻¹ ⬝ (p ⬝ q) ≈ q :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
definition concat_p_Vp {A : Type} {x y z : A} (p : x ≈ y) (q : x ≈ z) : p ⬝ (p⁻¹ ⬝ q) ≈ q :=
|
definition concat_p_Vp (p : x ≈ y) (q : x ≈ z) : p ⬝ (p⁻¹ ⬝ q) ≈ q :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
definition concat_pp_V {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q) ⬝ q⁻¹ ≈ p :=
|
definition concat_pp_V (p : x ≈ y) (q : y ≈ z) : (p ⬝ q) ⬝ q⁻¹ ≈ p :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
definition concat_pV_p {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) : (p ⬝ q⁻¹) ⬝ q ≈ p :=
|
definition concat_pV_p (p : x ≈ z) (q : y ≈ z) : (p ⬝ q⁻¹) ⬝ q ≈ p :=
|
||||||
rec_on q (take p, rec_on p idp) p
|
rec_on q (take p, rec_on p idp) p
|
||||||
|
|
||||||
-- Inverse distributes over concatenation
|
-- Inverse distributes over concatenation
|
||||||
definition inv_pp {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) : (p ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p⁻¹ :=
|
definition inv_pp (p : x ≈ y) (q : y ≈ z) : (p ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p⁻¹ :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
definition inv_Vp {A : Type} {x y z : A} (p : y ≈ x) (q : y ≈ z) : (p⁻¹ ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p :=
|
definition inv_Vp (p : y ≈ x) (q : y ≈ z) : (p⁻¹ ⬝ q)⁻¹ ≈ q⁻¹ ⬝ p :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
-- universe metavariables
|
-- universe metavariables
|
||||||
definition inv_pV {A : Type} {x y z : A} (p : x ≈ y) (q : z ≈ y) : (p ⬝ q⁻¹)⁻¹ ≈ q ⬝ p⁻¹ :=
|
definition inv_pV (p : x ≈ y) (q : z ≈ y) : (p ⬝ q⁻¹)⁻¹ ≈ q ⬝ p⁻¹ :=
|
||||||
rec_on p (take q, rec_on q idp) q
|
rec_on p (take q, rec_on q idp) q
|
||||||
|
|
||||||
definition inv_VV {A : Type} {x y z : A} (p : y ≈ x) (q : z ≈ y) : (p⁻¹ ⬝ q⁻¹)⁻¹ ≈ q ⬝ p :=
|
definition inv_VV (p : y ≈ x) (q : z ≈ y) : (p⁻¹ ⬝ q⁻¹)⁻¹ ≈ q ⬝ p :=
|
||||||
rec_on p (rec_on q idp)
|
rec_on p (rec_on q idp)
|
||||||
|
|
||||||
-- Inverse is an involution.
|
-- Inverse is an involution.
|
||||||
definition inv_V {A : Type} {x y : A} (p : x ≈ y) : p⁻¹⁻¹ ≈ p :=
|
definition inv_V (p : x ≈ y) : p⁻¹⁻¹ ≈ p :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- Theorems for moving things around in equations
|
-- Theorems for moving things around in equations
|
||||||
-- ----------------------------------------------
|
-- ----------------------------------------------
|
||||||
|
|
||||||
definition moveR_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
definition moveR_Mp (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||||
p ≈ (r⁻¹ ⬝ q) → (r ⬝ p) ≈ q :=
|
p ≈ (r⁻¹ ⬝ q) → (r ⬝ p) ≈ q :=
|
||||||
rec_on r (take p h, concat_1p _ ⬝ h ⬝ concat_1p _) p
|
rec_on r (take p h, concat_1p _ ⬝ h ⬝ concat_1p _) p
|
||||||
|
|
||||||
definition moveR_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
definition moveR_pM (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||||
r ≈ q ⬝ p⁻¹ → r ⬝ p ≈ q :=
|
r ≈ q ⬝ p⁻¹ → r ⬝ p ≈ q :=
|
||||||
rec_on p (take q h, (concat_p1 _ ⬝ h ⬝ concat_p1 _)) q
|
rec_on p (take q h, (concat_p1 _ ⬝ h ⬝ concat_p1 _)) q
|
||||||
|
|
||||||
definition moveR_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
definition moveR_Vp (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
||||||
p ≈ r ⬝ q → r⁻¹ ⬝ p ≈ q :=
|
p ≈ r ⬝ q → r⁻¹ ⬝ p ≈ q :=
|
||||||
rec_on r (take q h, concat_1p _ ⬝ h ⬝ concat_1p _) q
|
rec_on r (take q h, concat_1p _ ⬝ h ⬝ concat_1p _) q
|
||||||
|
|
||||||
definition moveR_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
definition moveR_pV (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
||||||
r ≈ q ⬝ p → r ⬝ p⁻¹ ≈ q :=
|
r ≈ q ⬝ p → r ⬝ p⁻¹ ≈ q :=
|
||||||
rec_on p (take r h, concat_p1 _ ⬝ h ⬝ concat_p1 _) r
|
rec_on p (take r h, concat_p1 _ ⬝ h ⬝ concat_p1 _) r
|
||||||
|
|
||||||
definition moveL_Mp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
definition moveL_Mp (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||||
r⁻¹ ⬝ q ≈ p → q ≈ r ⬝ p :=
|
r⁻¹ ⬝ q ≈ p → q ≈ r ⬝ p :=
|
||||||
rec_on r (take p h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) p
|
rec_on r (take p h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) p
|
||||||
|
|
||||||
definition moveL_pM {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
definition moveL_pM (p : x ≈ z) (q : y ≈ z) (r : y ≈ x) :
|
||||||
q ⬝ p⁻¹ ≈ r → q ≈ r ⬝ p :=
|
q ⬝ p⁻¹ ≈ r → q ≈ r ⬝ p :=
|
||||||
rec_on p (take q h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) q
|
rec_on p (take q h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) q
|
||||||
|
|
||||||
definition moveL_Vp {A : Type} {x y z : A} (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
definition moveL_Vp (p : x ≈ z) (q : y ≈ z) (r : x ≈ y) :
|
||||||
r ⬝ q ≈ p → q ≈ r⁻¹ ⬝ p :=
|
r ⬝ q ≈ p → q ≈ r⁻¹ ⬝ p :=
|
||||||
rec_on r (take q h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) q
|
rec_on r (take q h, (concat_1p _)⁻¹ ⬝ h ⬝ (concat_1p _)⁻¹) q
|
||||||
|
|
||||||
definition moveL_pV {A : Type} {x y z : A} (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
definition moveL_pV (p : z ≈ x) (q : y ≈ z) (r : y ≈ x) :
|
||||||
q ⬝ p ≈ r → q ≈ r ⬝ p⁻¹ :=
|
q ⬝ p ≈ r → q ≈ r ⬝ p⁻¹ :=
|
||||||
rec_on p (take r h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) r
|
rec_on p (take r h, (concat_p1 _)⁻¹ ⬝ h ⬝ (concat_p1 _)⁻¹) r
|
||||||
|
|
||||||
definition moveL_1M {A : Type} {x y : A} (p q : x ≈ y) :
|
definition moveL_1M (p q : x ≈ y) :
|
||||||
p ⬝ q⁻¹ ≈ idp → p ≈ q :=
|
p ⬝ q⁻¹ ≈ idp → p ≈ q :=
|
||||||
rec_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
rec_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
||||||
|
|
||||||
definition moveL_M1 {A : Type} {x y : A} (p q : x ≈ y) :
|
definition moveL_M1 (p q : x ≈ y) :
|
||||||
q⁻¹ ⬝ p ≈ idp → p ≈ q :=
|
q⁻¹ ⬝ p ≈ idp → p ≈ q :=
|
||||||
rec_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
rec_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
||||||
|
|
||||||
definition moveL_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
definition moveL_1V (p : x ≈ y) (q : y ≈ x) :
|
||||||
p ⬝ q ≈ idp → p ≈ q⁻¹ :=
|
p ⬝ q ≈ idp → p ≈ q⁻¹ :=
|
||||||
rec_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
rec_on q (take p h, (concat_p1 _)⁻¹ ⬝ h) p
|
||||||
|
|
||||||
definition moveL_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
definition moveL_V1 (p : x ≈ y) (q : y ≈ x) :
|
||||||
q ⬝ p ≈ idp → p ≈ q⁻¹ :=
|
q ⬝ p ≈ idp → p ≈ q⁻¹ :=
|
||||||
rec_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
rec_on q (take p h, (concat_1p _)⁻¹ ⬝ h) p
|
||||||
|
|
||||||
definition moveR_M1 {A : Type} {x y : A} (p q : x ≈ y) :
|
definition moveR_M1 (p q : x ≈ y) :
|
||||||
idp ≈ p⁻¹ ⬝ q → p ≈ q :=
|
idp ≈ p⁻¹ ⬝ q → p ≈ q :=
|
||||||
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
||||||
|
|
||||||
definition moveR_1M {A : Type} {x y : A} (p q : x ≈ y) :
|
definition moveR_1M (p q : x ≈ y) :
|
||||||
idp ≈ q ⬝ p⁻¹ → p ≈ q :=
|
idp ≈ q ⬝ p⁻¹ → p ≈ q :=
|
||||||
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||||
|
|
||||||
definition moveR_1V {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
definition moveR_1V (p : x ≈ y) (q : y ≈ x) :
|
||||||
idp ≈ q ⬝ p → p⁻¹ ≈ q :=
|
idp ≈ q ⬝ p → p⁻¹ ≈ q :=
|
||||||
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
rec_on p (take q h, h ⬝ (concat_p1 _)) q
|
||||||
|
|
||||||
definition moveR_V1 {A : Type} {x y : A} (p : x ≈ y) (q : y ≈ x) :
|
definition moveR_V1 (p : x ≈ y) (q : y ≈ x) :
|
||||||
idp ≈ p ⬝ q → p⁻¹ ≈ q :=
|
idp ≈ p ⬝ q → p⁻¹ ≈ q :=
|
||||||
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
rec_on p (take q h, h ⬝ (concat_1p _)) q
|
||||||
|
|
||||||
|
@ -182,7 +178,7 @@ rec_on p (take q h, h ⬝ (concat_1p _)) q
|
||||||
-- Transport
|
-- Transport
|
||||||
-- ---------
|
-- ---------
|
||||||
|
|
||||||
definition transport [reducible] {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) : P y :=
|
definition transport [reducible] (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) : P y :=
|
||||||
path.rec_on p u
|
path.rec_on p u
|
||||||
|
|
||||||
-- This idiom makes the operation right associative.
|
-- This idiom makes the operation right associative.
|
||||||
|
@ -193,20 +189,20 @@ path.rec_on p idp
|
||||||
|
|
||||||
definition ap01 := ap
|
definition ap01 := ap
|
||||||
|
|
||||||
definition homotopy [reducible] {A : Type} {P : A → Type} (f g : Πx, P x) : Type :=
|
definition homotopy [reducible] (f g : Πx, P x) : Type :=
|
||||||
Πx : A, f x ≈ g x
|
Πx : A, f x ≈ g x
|
||||||
|
|
||||||
notation f ∼ g := homotopy f g
|
notation f ∼ g := homotopy f g
|
||||||
|
|
||||||
definition apD10 {A} {B : A → Type} {f g : Πx, B x} (H : f ≈ g) : f ∼ g :=
|
definition apD10 {f g : Πx, P x} (H : f ≈ g) : f ∼ g :=
|
||||||
λx, path.rec_on H idp
|
λx, path.rec_on H idp
|
||||||
|
|
||||||
definition ap10 {A B} {f g : A → B} (H : f ≈ g) : f ∼ g := apD10 H
|
definition ap10 {f g : A → B} (H : f ≈ g) : f ∼ g := apD10 H
|
||||||
|
|
||||||
definition ap11 {A B} {f g : A → B} (H : f ≈ g) {x y : A} (p : x ≈ y) : f x ≈ g y :=
|
definition ap11 {f g : A → B} (H : f ≈ g) {x y : A} (p : x ≈ y) : f x ≈ g y :=
|
||||||
rec_on H (rec_on p idp)
|
rec_on H (rec_on p idp)
|
||||||
|
|
||||||
definition apD {A:Type} {B : A → Type} (f : Πa:A, B a) {x y : A} (p : x ≈ y) : p ▹ (f x) ≈ f y :=
|
definition apD (f : Πa:A, P a) {x y : A} (p : x ≈ y) : p ▹ (f x) ≈ f y :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
|
|
||||||
|
@ -221,19 +217,19 @@ calc_symm inverse
|
||||||
-- More theorems for moving things around in equations
|
-- More theorems for moving things around in equations
|
||||||
-- ---------------------------------------------------
|
-- ---------------------------------------------------
|
||||||
|
|
||||||
definition moveR_transport_p {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
definition moveR_transport_p (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
||||||
u ≈ p⁻¹ ▹ v → p ▹ u ≈ v :=
|
u ≈ p⁻¹ ▹ v → p ▹ u ≈ v :=
|
||||||
rec_on p (take v, id) v
|
rec_on p (take v, id) v
|
||||||
|
|
||||||
definition moveR_transport_V {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
definition moveR_transport_V (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
||||||
u ≈ p ▹ v → p⁻¹ ▹ u ≈ v :=
|
u ≈ p ▹ v → p⁻¹ ▹ u ≈ v :=
|
||||||
rec_on p (take u, id) u
|
rec_on p (take u, id) u
|
||||||
|
|
||||||
definition moveL_transport_V {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
definition moveL_transport_V (P : A → Type) {x y : A} (p : x ≈ y) (u : P x) (v : P y) :
|
||||||
p ▹ u ≈ v → u ≈ p⁻¹ ▹ v :=
|
p ▹ u ≈ v → u ≈ p⁻¹ ▹ v :=
|
||||||
rec_on p (take v, id) v
|
rec_on p (take v, id) v
|
||||||
|
|
||||||
definition moveL_transport_p {A : Type} (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
definition moveL_transport_p (P : A → Type) {x y : A} (p : y ≈ x) (u : P x) (v : P y) :
|
||||||
p⁻¹ ▹ u ≈ v → u ≈ p ▹ v :=
|
p⁻¹ ▹ u ≈ v → u ≈ p ▹ v :=
|
||||||
rec_on p (take u, id) u
|
rec_on p (take u, id) u
|
||||||
|
|
||||||
|
@ -244,25 +240,25 @@ rec_on p (take u, id) u
|
||||||
-- functorial.
|
-- functorial.
|
||||||
|
|
||||||
-- Functions take identity paths to identity paths
|
-- Functions take identity paths to identity paths
|
||||||
definition ap_1 {A B : Type} (x : A) (f : A → B) : (ap f idp) ≈ idp :> (f x ≈ f x) := idp
|
definition ap_1 (x : A) (f : A → B) : (ap f idp) ≈ idp :> (f x ≈ f x) := idp
|
||||||
|
|
||||||
definition apD_1 {A B} (x : A) (f : Π x : A, B x) : apD f idp ≈ idp :> (f x ≈ f x) := idp
|
definition apD_1 (x : A) (f : Π x : A, P x) : apD f idp ≈ idp :> (f x ≈ f x) := idp
|
||||||
|
|
||||||
-- Functions commute with concatenation.
|
-- Functions commute with concatenation.
|
||||||
definition ap_pp {A B : Type} (f : A → B) {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
definition ap_pp (f : A → B) {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
||||||
ap f (p ⬝ q) ≈ (ap f p) ⬝ (ap f q) :=
|
ap f (p ⬝ q) ≈ (ap f p) ⬝ (ap f q) :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
definition ap_p_pp {A B : Type} (f : A → B) {w x y z : A} (r : f w ≈ f x) (p : x ≈ y) (q : y ≈ z) :
|
definition ap_p_pp (f : A → B) {w x y z : A} (r : f w ≈ f x) (p : x ≈ y) (q : y ≈ z) :
|
||||||
r ⬝ (ap f (p ⬝ q)) ≈ (r ⬝ ap f p) ⬝ (ap f q) :=
|
r ⬝ (ap f (p ⬝ q)) ≈ (r ⬝ ap f p) ⬝ (ap f q) :=
|
||||||
rec_on q (take p, rec_on p (concat_p_pp r idp idp)) p
|
rec_on q (take p, rec_on p (concat_p_pp r idp idp)) p
|
||||||
|
|
||||||
definition ap_pp_p {A B : Type} (f : A → B) {w x y z : A} (p : x ≈ y) (q : y ≈ z) (r : f z ≈ f w) :
|
definition ap_pp_p (f : A → B) {w x y z : A} (p : x ≈ y) (q : y ≈ z) (r : f z ≈ f w) :
|
||||||
(ap f (p ⬝ q)) ⬝ r ≈ (ap f p) ⬝ (ap f q ⬝ r) :=
|
(ap f (p ⬝ q)) ⬝ r ≈ (ap f p) ⬝ (ap f q ⬝ r) :=
|
||||||
rec_on q (rec_on p (take r, concat_pp_p _ _ _)) r
|
rec_on q (rec_on p (take r, concat_pp_p _ _ _)) r
|
||||||
|
|
||||||
-- Functions commute with path inverses.
|
-- Functions commute with path inverses.
|
||||||
definition inverse_ap {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : (ap f p)⁻¹ ≈ ap f (p⁻¹) :=
|
definition inverse_ap (f : A → B) {x y : A} (p : x ≈ y) : (ap f p)⁻¹ ≈ ap f (p⁻¹) :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
definition ap_V {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : ap f (p⁻¹) ≈ (ap f p)⁻¹ :=
|
definition ap_V {A B : Type} (f : A → B) {x y : A} (p : x ≈ y) : ap f (p⁻¹) ≈ (ap f p)⁻¹ :=
|
||||||
|
@ -270,51 +266,51 @@ rec_on p idp
|
||||||
|
|
||||||
-- [ap] itself is functorial in the first argument.
|
-- [ap] itself is functorial in the first argument.
|
||||||
|
|
||||||
definition ap_idmap {A : Type} {x y : A} (p : x ≈ y) : ap id p ≈ p :=
|
definition ap_idmap (p : x ≈ y) : ap id p ≈ p :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
definition ap_compose {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
definition ap_compose (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
||||||
ap (g ∘ f) p ≈ ap g (ap f p) :=
|
ap (g ∘ f) p ≈ ap g (ap f p) :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- Sometimes we don't have the actual function [compose].
|
-- Sometimes we don't have the actual function [compose].
|
||||||
definition ap_compose' {A B C : Type} (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
definition ap_compose' (f : A → B) (g : B → C) {x y : A} (p : x ≈ y) :
|
||||||
ap (λa, g (f a)) p ≈ ap g (ap f p) :=
|
ap (λa, g (f a)) p ≈ ap g (ap f p) :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- The action of constant maps.
|
-- The action of constant maps.
|
||||||
definition ap_const {A B : Type} {x y : A} (p : x ≈ y) (z : B) :
|
definition ap_const (p : x ≈ y) (z : B) :
|
||||||
ap (λu, z) p ≈ idp :=
|
ap (λu, z) p ≈ idp :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- Naturality of [ap].
|
-- Naturality of [ap].
|
||||||
definition concat_Ap {A B : Type} {f g : A → B} (p : Π x, f x ≈ g x) {x y : A} (q : x ≈ y) :
|
definition concat_Ap {f g : A → B} (p : Π x, f x ≈ g x) {x y : A} (q : x ≈ y) :
|
||||||
(ap f q) ⬝ (p y) ≈ (p x) ⬝ (ap g q) :=
|
(ap f q) ⬝ (p y) ≈ (p x) ⬝ (ap g q) :=
|
||||||
rec_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
rec_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
||||||
|
|
||||||
-- Naturality of [ap] at identity.
|
-- Naturality of [ap] at identity.
|
||||||
definition concat_A1p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) :
|
definition concat_A1p {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y) :
|
||||||
(ap f q) ⬝ (p y) ≈ (p x) ⬝ q :=
|
(ap f q) ⬝ (p y) ≈ (p x) ⬝ q :=
|
||||||
rec_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
rec_on q (concat_1p _ ⬝ (concat_p1 _)⁻¹)
|
||||||
|
|
||||||
definition concat_pA1 {A : Type} {f : A → A} (p : Πx, x ≈ f x) {x y : A} (q : x ≈ y) :
|
definition concat_pA1 {f : A → A} (p : Πx, x ≈ f x) {x y : A} (q : x ≈ y) :
|
||||||
(p x) ⬝ (ap f q) ≈ q ⬝ (p y) :=
|
(p x) ⬝ (ap f q) ≈ q ⬝ (p y) :=
|
||||||
rec_on q (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
rec_on q (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
||||||
|
|
||||||
-- Naturality with other paths hanging around.
|
-- Naturality with other paths hanging around.
|
||||||
|
|
||||||
definition concat_pA_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
definition concat_pA_pp {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
||||||
{w z : B} (r : w ≈ f x) (s : g y ≈ z) :
|
{w z : B} (r : w ≈ f x) (s : g y ≈ z) :
|
||||||
(r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (ap g q ⬝ s) :=
|
(r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (ap g q ⬝ s) :=
|
||||||
rec_on s (rec_on q idp)
|
rec_on s (rec_on q idp)
|
||||||
|
|
||||||
definition concat_pA_p {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
definition concat_pA_p {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
||||||
{w : B} (r : w ≈ f x) :
|
{w : B} (r : w ≈ f x) :
|
||||||
(r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ ap g q :=
|
(r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ ap g q :=
|
||||||
rec_on q idp
|
rec_on q idp
|
||||||
|
|
||||||
-- TODO: try this using the simplifier, and compare proofs
|
-- TODO: try this using the simplifier, and compare proofs
|
||||||
definition concat_A_pp {A B : Type} {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
definition concat_A_pp {f g : A → B} (p : Πx, f x ≈ g x) {x y : A} (q : x ≈ y)
|
||||||
{z : B} (s : g y ≈ z) :
|
{z : B} (s : g y ≈ z) :
|
||||||
(ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (ap g q ⬝ s) :=
|
(ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (ap g q ⬝ s) :=
|
||||||
rec_on s (rec_on q
|
rec_on s (rec_on q
|
||||||
|
@ -325,32 +321,32 @@ rec_on s (rec_on q
|
||||||
-- This also works:
|
-- This also works:
|
||||||
-- rec_on s (rec_on q (concat_1p _ ▹ idp))
|
-- rec_on s (rec_on q (concat_1p _ ▹ idp))
|
||||||
|
|
||||||
definition concat_pA1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
definition concat_pA1_pp {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
||||||
{w z : A} (r : w ≈ f x) (s : y ≈ z) :
|
{w z : A} (r : w ≈ f x) (s : y ≈ z) :
|
||||||
(r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (q ⬝ s) :=
|
(r ⬝ ap f q) ⬝ (p y ⬝ s) ≈ (r ⬝ p x) ⬝ (q ⬝ s) :=
|
||||||
rec_on s (rec_on q idp)
|
rec_on s (rec_on q idp)
|
||||||
|
|
||||||
definition concat_pp_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
definition concat_pp_A1p {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
||||||
{w z : A} (r : w ≈ x) (s : g y ≈ z) :
|
{w z : A} (r : w ≈ x) (s : g y ≈ z) :
|
||||||
(r ⬝ p x) ⬝ (ap g q ⬝ s) ≈ (r ⬝ q) ⬝ (p y ⬝ s) :=
|
(r ⬝ p x) ⬝ (ap g q ⬝ s) ≈ (r ⬝ q) ⬝ (p y ⬝ s) :=
|
||||||
rec_on s (rec_on q idp)
|
rec_on s (rec_on q idp)
|
||||||
|
|
||||||
definition concat_pA1_p {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
definition concat_pA1_p {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
||||||
{w : A} (r : w ≈ f x) :
|
{w : A} (r : w ≈ f x) :
|
||||||
(r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ q :=
|
(r ⬝ ap f q) ⬝ p y ≈ (r ⬝ p x) ⬝ q :=
|
||||||
rec_on q idp
|
rec_on q idp
|
||||||
|
|
||||||
definition concat_A1_pp {A : Type} {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
definition concat_A1_pp {f : A → A} (p : Πx, f x ≈ x) {x y : A} (q : x ≈ y)
|
||||||
{z : A} (s : y ≈ z) :
|
{z : A} (s : y ≈ z) :
|
||||||
(ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (q ⬝ s) :=
|
(ap f q) ⬝ (p y ⬝ s) ≈ (p x) ⬝ (q ⬝ s) :=
|
||||||
rec_on s (rec_on q (concat_1p _ ▹ idp))
|
rec_on s (rec_on q (concat_1p _ ▹ idp))
|
||||||
|
|
||||||
definition concat_pp_A1 {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
definition concat_pp_A1 {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
||||||
{w : A} (r : w ≈ x) :
|
{w : A} (r : w ≈ x) :
|
||||||
(r ⬝ p x) ⬝ ap g q ≈ (r ⬝ q) ⬝ p y :=
|
(r ⬝ p x) ⬝ ap g q ≈ (r ⬝ q) ⬝ p y :=
|
||||||
rec_on q idp
|
rec_on q idp
|
||||||
|
|
||||||
definition concat_p_A1p {A : Type} {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
definition concat_p_A1p {g : A → A} (p : Πx, x ≈ g x) {x y : A} (q : x ≈ y)
|
||||||
{z : A} (s : g y ≈ z) :
|
{z : A} (s : g y ≈ z) :
|
||||||
p x ⬝ (ap g q ⬝ s) ≈ q ⬝ (p y ⬝ s) :=
|
p x ⬝ (ap g q ⬝ s) ≈ q ⬝ (p y ⬝ s) :=
|
||||||
begin
|
begin
|
||||||
|
@ -364,25 +360,26 @@ end
|
||||||
|
|
||||||
-- Application of paths between functions preserves the groupoid structure
|
-- Application of paths between functions preserves the groupoid structure
|
||||||
|
|
||||||
definition apD10_1 {A} {B : A → Type} (f : Πx, B x) (x : A) : apD10 (idpath f) x ≈ idp := idp
|
definition apD10_1 (f : Πx, P x) (x : A) : apD10 (idpath f) x ≈ idp := idp
|
||||||
|
|
||||||
definition apD10_pp {A} {B : A → Type} {f f' f'' : Πx, B x} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
|
definition apD10_pp {f f' f'' : Πx, P x} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
|
||||||
apD10 (h ⬝ h') x ≈ apD10 h x ⬝ apD10 h' x :=
|
apD10 (h ⬝ h') x ≈ apD10 h x ⬝ apD10 h' x :=
|
||||||
rec_on h (take h', rec_on h' idp) h'
|
rec_on h (take h', rec_on h' idp) h'
|
||||||
|
|
||||||
definition apD10_V {A : Type} {B : A → Type} {f g : Πx : A, B x} (h : f ≈ g) (x : A) :
|
definition apD10_V {f g : Πx : A, P x} (h : f ≈ g) (x : A) :
|
||||||
apD10 (h⁻¹) x ≈ (apD10 h x)⁻¹ :=
|
apD10 (h⁻¹) x ≈ (apD10 h x)⁻¹ :=
|
||||||
rec_on h idp
|
rec_on h idp
|
||||||
|
|
||||||
definition ap10_1 {A B} {f : A → B} (x : A) : ap10 (idpath f) x ≈ idp := idp
|
definition ap10_1 {f : A → B} (x : A) : ap10 (idpath f) x ≈ idp := idp
|
||||||
|
|
||||||
definition ap10_pp {A B} {f f' f'' : A → B} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
|
definition ap10_pp {f f' f'' : A → B} (h : f ≈ f') (h' : f' ≈ f'') (x : A) :
|
||||||
ap10 (h ⬝ h') x ≈ ap10 h x ⬝ ap10 h' x := apD10_pp h h' x
|
ap10 (h ⬝ h') x ≈ ap10 h x ⬝ ap10 h' x := apD10_pp h h' x
|
||||||
|
|
||||||
definition ap10_V {A B} {f g : A→B} (h : f ≈ g) (x:A) : ap10 (h⁻¹) x ≈ (ap10 h x)⁻¹ := apD10_V h x
|
definition ap10_V {f g : A → B} (h : f ≈ g) (x : A) : ap10 (h⁻¹) x ≈ (ap10 h x)⁻¹ :=
|
||||||
|
apD10_V h x
|
||||||
|
|
||||||
-- [ap10] also behaves nicely on paths produced by [ap]
|
-- [ap10] also behaves nicely on paths produced by [ap]
|
||||||
definition ap_ap10 {A B C} (f g : A → B) (h : B → C) (p : f ≈ g) (a : A) :
|
definition ap_ap10 (f g : A → B) (h : B → C) (p : f ≈ g) (a : A) :
|
||||||
ap h (ap10 p a) ≈ ap10 (ap (λ f', h ∘ f') p) a:=
|
ap h (ap10 p a) ≈ ap10 (ap (λ f', h ∘ f') p) a:=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
|
@ -390,22 +387,22 @@ rec_on p idp
|
||||||
-- Transport and the groupoid structure of paths
|
-- Transport and the groupoid structure of paths
|
||||||
-- ---------------------------------------------
|
-- ---------------------------------------------
|
||||||
|
|
||||||
definition transport_1 {A : Type} (P : A → Type) {x : A} (u : P x) :
|
definition transport_1 (P : A → Type) {x : A} (u : P x) :
|
||||||
idp ▹ u ≈ u := idp
|
idp ▹ u ≈ u := idp
|
||||||
|
|
||||||
definition transport_pp {A : Type} (P : A → Type) {x y z : A} (p : x ≈ y) (q : y ≈ z) (u : P x) :
|
definition transport_pp (P : A → Type) {x y z : A} (p : x ≈ y) (q : y ≈ z) (u : P x) :
|
||||||
p ⬝ q ▹ u ≈ q ▹ p ▹ u :=
|
p ⬝ q ▹ u ≈ q ▹ p ▹ u :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
definition transport_pV {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P y) :
|
definition transport_pV (P : A → Type) {x y : A} (p : x ≈ y) (z : P y) :
|
||||||
p ▹ p⁻¹ ▹ z ≈ z :=
|
p ▹ p⁻¹ ▹ z ≈ z :=
|
||||||
(transport_pp P (p⁻¹) p z)⁻¹ ⬝ ap (λr, transport P r z) (concat_Vp p)
|
(transport_pp P (p⁻¹) p z)⁻¹ ⬝ ap (λr, transport P r z) (concat_Vp p)
|
||||||
|
|
||||||
definition transport_Vp {A : Type} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
|
definition transport_Vp (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
|
||||||
p⁻¹ ▹ p ▹ z ≈ z :=
|
p⁻¹ ▹ p ▹ z ≈ z :=
|
||||||
(transport_pp P p (p⁻¹) z)⁻¹ ⬝ ap (λr, transport P r z) (concat_pV p)
|
(transport_pp P p (p⁻¹) z)⁻¹ ⬝ ap (λr, transport P r z) (concat_pV p)
|
||||||
|
|
||||||
definition transport_p_pp {A : Type} (P : A → Type)
|
definition transport_p_pp (P : A → Type)
|
||||||
{x y z w : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ w) (u : P x) :
|
{x y z w : A} (p : x ≈ y) (q : y ≈ z) (r : z ≈ w) (u : P x) :
|
||||||
ap (λe, e ▹ u) (concat_p_pp p q r) ⬝ (transport_pp P (p ⬝ q) r u) ⬝
|
ap (λe, e ▹ u) (concat_p_pp p q r) ⬝ (transport_pp P (p ⬝ q) r u) ⬝
|
||||||
ap (transport P r) (transport_pp P p q u)
|
ap (transport P r) (transport_pp P p q u)
|
||||||
|
@ -414,53 +411,53 @@ definition transport_p_pp {A : Type} (P : A → Type)
|
||||||
rec_on r (rec_on q (rec_on p idp))
|
rec_on r (rec_on q (rec_on p idp))
|
||||||
|
|
||||||
-- Here is another coherence lemma for transport.
|
-- Here is another coherence lemma for transport.
|
||||||
definition transport_pVp {A} (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
|
definition transport_pVp (P : A → Type) {x y : A} (p : x ≈ y) (z : P x) :
|
||||||
transport_pV P p (transport P p z) ≈ ap (transport P p) (transport_Vp P p z) :=
|
transport_pV P p (transport P p z) ≈ ap (transport P p) (transport_Vp P p z) :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- Dependent transport in a doubly dependent type.
|
-- Dependent transport in a doubly dependent type.
|
||||||
-- should B, C and y all be explicit here?
|
-- should P, Q and y all be explicit here?
|
||||||
definition transportD {A : Type} (B : A → Type) (C : Π a : A, B a → Type)
|
definition transportD (P : A → Type) (Q : Π a : A, P a → Type)
|
||||||
{x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1 y) : C x2 (p ▹ y) :=
|
{a a' : A} (p : a ≈ a') (b : P a) (z : Q a b) : Q a' (p ▹ b) :=
|
||||||
rec_on p z
|
rec_on p z
|
||||||
-- In Coq the variables B, C and y are explicit, but in Lean we can probably have them implicit using the following notation
|
-- In Coq the variables B, C and y are explicit, but in Lean we can probably have them implicit using the following notation
|
||||||
notation p `▹D`:65 x:64 := transportD _ _ p _ x
|
notation p `▹D`:65 x:64 := transportD _ _ p _ x
|
||||||
|
|
||||||
-- Transporting along higher-dimensional paths
|
-- Transporting along higher-dimensional paths
|
||||||
definition transport2 {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : P x) :
|
definition transport2 (P : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : P x) :
|
||||||
p ▹ z ≈ q ▹ z :=
|
p ▹ z ≈ q ▹ z :=
|
||||||
ap (λp', p' ▹ z) r
|
ap (λp', p' ▹ z) r
|
||||||
|
|
||||||
notation p `▹2`:65 x:64 := transport2 _ p _ x
|
notation p `▹2`:65 x:64 := transport2 _ p _ x
|
||||||
|
|
||||||
-- An alternative definition.
|
-- An alternative definition.
|
||||||
definition transport2_is_ap10 {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q)
|
definition transport2_is_ap10 (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q)
|
||||||
(z : Q x) :
|
(z : Q x) :
|
||||||
transport2 Q r z ≈ ap10 (ap (transport Q) r) z :=
|
transport2 Q r z ≈ ap10 (ap (transport Q) r) z :=
|
||||||
rec_on r idp
|
rec_on r idp
|
||||||
|
|
||||||
definition transport2_p2p {A : Type} (P : A → Type) {x y : A} {p1 p2 p3 : x ≈ y}
|
definition transport2_p2p (P : A → Type) {x y : A} {p1 p2 p3 : x ≈ y}
|
||||||
(r1 : p1 ≈ p2) (r2 : p2 ≈ p3) (z : P x) :
|
(r1 : p1 ≈ p2) (r2 : p2 ≈ p3) (z : P x) :
|
||||||
transport2 P (r1 ⬝ r2) z ≈ transport2 P r1 z ⬝ transport2 P r2 z :=
|
transport2 P (r1 ⬝ r2) z ≈ transport2 P r1 z ⬝ transport2 P r2 z :=
|
||||||
rec_on r1 (rec_on r2 idp)
|
rec_on r1 (rec_on r2 idp)
|
||||||
|
|
||||||
definition transport2_V {A : Type} (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : Q x) :
|
definition transport2_V (Q : A → Type) {x y : A} {p q : x ≈ y} (r : p ≈ q) (z : Q x) :
|
||||||
transport2 Q (r⁻¹) z ≈ ((transport2 Q r z)⁻¹) :=
|
transport2 Q (r⁻¹) z ≈ ((transport2 Q r z)⁻¹) :=
|
||||||
rec_on r idp
|
rec_on r idp
|
||||||
|
|
||||||
definition transportD2 {A : Type} (B C : A → Type) (D : Π(a:A), B a → C a → Type)
|
definition transportD2 (B C : A → Type) (D : Π(a:A), B a → C a → Type)
|
||||||
{x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p ▹ y) (p ▹ z) :=
|
{x1 x2 : A} (p : x1 ≈ x2) (y : B x1) (z : C x1) (w : D x1 y z) : D x2 (p ▹ y) (p ▹ z) :=
|
||||||
rec_on p w
|
rec_on p w
|
||||||
|
|
||||||
notation p `▹D2`:65 x:64 := transportD2 _ _ _ p _ _ x
|
notation p `▹D2`:65 x:64 := transportD2 _ _ _ p _ _ x
|
||||||
|
|
||||||
definition concat_AT {A : Type} (P : A → Type) {x y : A} {p q : x ≈ y} {z w : P x} (r : p ≈ q)
|
definition concat_AT (P : A → Type) {x y : A} {p q : x ≈ y} {z w : P x} (r : p ≈ q)
|
||||||
(s : z ≈ w) :
|
(s : z ≈ w) :
|
||||||
ap (transport P p) s ⬝ transport2 P r w ≈ transport2 P r z ⬝ ap (transport P q) s :=
|
ap (transport P p) s ⬝ transport2 P r w ≈ transport2 P r z ⬝ ap (transport P q) s :=
|
||||||
rec_on r (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
rec_on r (concat_p1 _ ⬝ (concat_1p _)⁻¹)
|
||||||
|
|
||||||
-- TODO (from Coq library): What should this be called?
|
-- TODO (from Coq library): What should this be called?
|
||||||
definition ap_transport {A} {P Q : A → Type} {x y : A} (p : x ≈ y) (f : Πx, P x → Q x) (z : P x) :
|
definition ap_transport {P Q : A → Type} {x y : A} (p : x ≈ y) (f : Πx, P x → Q x) (z : P x) :
|
||||||
f y (p ▹ z) ≈ (p ▹ (f x z)) :=
|
f y (p ▹ z) ≈ (p ▹ (f x z)) :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
|
@ -478,34 +475,33 @@ subdirectory. Here we consider only the most basic cases.
|
||||||
-/
|
-/
|
||||||
|
|
||||||
-- Transporting in a constant fibration.
|
-- Transporting in a constant fibration.
|
||||||
definition transport_const {A B : Type} {x1 x2 : A} (p : x1 ≈ x2) (y : B) :
|
definition transport_const (p : x ≈ y) (z : B) : transport (λx, B) p z ≈ z :=
|
||||||
transport (λx, B) p y ≈ y :=
|
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
definition transport2_const {A B : Type} {x1 x2 : A} {p q : x1 ≈ x2} (r : p ≈ q) (y : B) :
|
definition transport2_const {p q : x ≈ y} (r : p ≈ q) (z : B) :
|
||||||
transport_const p y ≈ transport2 (λu, B) r y ⬝ transport_const q y :=
|
transport_const p z ≈ transport2 (λu, B) r z ⬝ transport_const q z :=
|
||||||
rec_on r (concat_1p _)⁻¹
|
rec_on r (concat_1p _)⁻¹
|
||||||
|
|
||||||
-- Transporting in a pulled back fibration.
|
-- Transporting in a pulled back fibration.
|
||||||
-- TODO: P can probably be implicit
|
-- TODO: P can probably be implicit
|
||||||
definition transport_compose {A B} {x y : A} (P : B → Type) (f : A → B) (p : x ≈ y) (z : P (f x)) :
|
definition transport_compose (P : B → Type) (f : A → B) (p : x ≈ y) (z : P (f x)) :
|
||||||
transport (λx, P (f x)) p z ≈ transport P (ap f p) z :=
|
transport (P ∘ f) p z ≈ transport P (ap f p) z :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
definition transport_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') :
|
definition transport_precompose (f : A → B) (g g' : B → C) (p : g ≈ g') :
|
||||||
transport (λh : B → C, g ∘ f ≈ h ∘ f) p idp ≈ ap (λh, h ∘ f) p :=
|
transport (λh : B → C, g ∘ f ≈ h ∘ f) p idp ≈ ap (λh, h ∘ f) p :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
definition apD10_ap_precompose {A B C} (f : A → B) (g g' : B → C) (p : g ≈ g') (a : A) :
|
definition apD10_ap_precompose (f : A → B) (g g' : B → C) (p : g ≈ g') (a : A) :
|
||||||
apD10 (ap (λh : B → C, h ∘ f) p) a ≈ apD10 p (f a) :=
|
apD10 (ap (λh : B → C, h ∘ f) p) a ≈ apD10 p (f a) :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
definition apD10_ap_postcompose {A B C} (f : B → C) (g g' : A → B) (p : g ≈ g') (a : A) :
|
definition apD10_ap_postcompose (f : B → C) (g g' : A → B) (p : g ≈ g') (a : A) :
|
||||||
apD10 (ap (λh : A → B, f ∘ h) p) a ≈ ap f (apD10 p a) :=
|
apD10 (ap (λh : A → B, f ∘ h) p) a ≈ ap f (apD10 p a) :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
-- A special case of [transport_compose] which seems to come up a lot.
|
-- A special case of [transport_compose] which seems to come up a lot.
|
||||||
definition transport_idmap_ap A (P : A → Type) x y (p : x ≈ y) (u : P x) :
|
definition transport_idmap_ap (P : A → Type) x y (p : x ≈ y) (u : P x) :
|
||||||
transport P p u ≈ transport (λz, z) (ap P p) u :=
|
transport P p u ≈ transport (λz, z) (ap P p) u :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
|
@ -514,7 +510,7 @@ rec_on p idp
|
||||||
-- ------------------------------
|
-- ------------------------------
|
||||||
|
|
||||||
-- In a constant fibration, [apD] reduces to [ap], modulo [transport_const].
|
-- In a constant fibration, [apD] reduces to [ap], modulo [transport_const].
|
||||||
definition apD_const {A B} {x y : A} (f : A → B) (p: x ≈ y) :
|
definition apD_const (f : A → B) (p: x ≈ y) :
|
||||||
apD f p ≈ transport_const p (f x) ⬝ ap f p :=
|
apD f p ≈ transport_const p (f x) ⬝ ap f p :=
|
||||||
rec_on p idp
|
rec_on p idp
|
||||||
|
|
||||||
|
@ -523,75 +519,75 @@ rec_on p idp
|
||||||
-- ------------------------------------
|
-- ------------------------------------
|
||||||
|
|
||||||
-- Horizontal composition of 2-dimensional paths.
|
-- Horizontal composition of 2-dimensional paths.
|
||||||
definition concat2 {A} {x y z : A} {p p' : x ≈ y} {q q' : y ≈ z} (h : p ≈ p') (h' : q ≈ q') :
|
definition concat2 {p p' : x ≈ y} {q q' : y ≈ z} (h : p ≈ p') (h' : q ≈ q') :
|
||||||
p ⬝ q ≈ p' ⬝ q' :=
|
p ⬝ q ≈ p' ⬝ q' :=
|
||||||
rec_on h (rec_on h' idp)
|
rec_on h (rec_on h' idp)
|
||||||
|
|
||||||
infixl `◾`:75 := concat2
|
infixl `◾`:75 := concat2
|
||||||
|
|
||||||
-- 2-dimensional path inversion
|
-- 2-dimensional path inversion
|
||||||
definition inverse2 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) : p⁻¹ ≈ q⁻¹ :=
|
definition inverse2 {p q : x ≈ y} (h : p ≈ q) : p⁻¹ ≈ q⁻¹ :=
|
||||||
rec_on h idp
|
rec_on h idp
|
||||||
|
|
||||||
|
|
||||||
-- Whiskering
|
-- Whiskering
|
||||||
-- ----------
|
-- ----------
|
||||||
|
|
||||||
definition whiskerL {A : Type} {x y z : A} (p : x ≈ y) {q r : y ≈ z} (h : q ≈ r) : p ⬝ q ≈ p ⬝ r :=
|
definition whiskerL (p : x ≈ y) {q r : y ≈ z} (h : q ≈ r) : p ⬝ q ≈ p ⬝ r :=
|
||||||
idp ◾ h
|
idp ◾ h
|
||||||
|
|
||||||
definition whiskerR {A : Type} {x y z : A} {p q : x ≈ y} (h : p ≈ q) (r : y ≈ z) : p ⬝ r ≈ q ⬝ r :=
|
definition whiskerR {p q : x ≈ y} (h : p ≈ q) (r : y ≈ z) : p ⬝ r ≈ q ⬝ r :=
|
||||||
h ◾ idp
|
h ◾ idp
|
||||||
|
|
||||||
-- Unwhiskering, a.k.a. cancelling
|
-- Unwhiskering, a.k.a. cancelling
|
||||||
|
|
||||||
definition cancelL {A} {x y z : A} (p : x ≈ y) (q r : y ≈ z) : (p ⬝ q ≈ p ⬝ r) → (q ≈ r) :=
|
definition cancelL {x y z : A} (p : x ≈ y) (q r : y ≈ z) : (p ⬝ q ≈ p ⬝ r) → (q ≈ r) :=
|
||||||
rec_on p (take r, rec_on r (take q a, (concat_1p q)⁻¹ ⬝ a)) r q
|
rec_on p (take r, rec_on r (take q a, (concat_1p q)⁻¹ ⬝ a)) r q
|
||||||
|
|
||||||
definition cancelR {A} {x y z : A} (p q : x ≈ y) (r : y ≈ z) : (p ⬝ r ≈ q ⬝ r) → (p ≈ q) :=
|
definition cancelR {x y z : A} (p q : x ≈ y) (r : y ≈ z) : (p ⬝ r ≈ q ⬝ r) → (p ≈ q) :=
|
||||||
rec_on r (rec_on p (take q a, a ⬝ concat_p1 q)) q
|
rec_on r (rec_on p (take q a, a ⬝ concat_p1 q)) q
|
||||||
|
|
||||||
-- Whiskering and identity paths.
|
-- Whiskering and identity paths.
|
||||||
|
|
||||||
definition whiskerR_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
definition whiskerR_p1 {p q : x ≈ y} (h : p ≈ q) :
|
||||||
(concat_p1 p)⁻¹ ⬝ whiskerR h idp ⬝ concat_p1 q ≈ h :=
|
(concat_p1 p)⁻¹ ⬝ whiskerR h idp ⬝ concat_p1 q ≈ h :=
|
||||||
rec_on h (rec_on p idp)
|
rec_on h (rec_on p idp)
|
||||||
|
|
||||||
definition whiskerR_1p {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
definition whiskerR_1p (p : x ≈ y) (q : y ≈ z) :
|
||||||
whiskerR idp q ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
whiskerR idp q ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
||||||
rec_on q idp
|
rec_on q idp
|
||||||
|
|
||||||
definition whiskerL_p1 {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
definition whiskerL_p1 (p : x ≈ y) (q : y ≈ z) :
|
||||||
whiskerL p idp ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
whiskerL p idp ≈ idp :> (p ⬝ q ≈ p ⬝ q) :=
|
||||||
rec_on q idp
|
rec_on q idp
|
||||||
|
|
||||||
definition whiskerL_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
definition whiskerL_1p {p q : x ≈ y} (h : p ≈ q) :
|
||||||
(concat_1p p) ⁻¹ ⬝ whiskerL idp h ⬝ concat_1p q ≈ h :=
|
(concat_1p p) ⁻¹ ⬝ whiskerL idp h ⬝ concat_1p q ≈ h :=
|
||||||
rec_on h (rec_on p idp)
|
rec_on h (rec_on p idp)
|
||||||
|
|
||||||
definition concat2_p1 {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
definition concat2_p1 {p q : x ≈ y} (h : p ≈ q) :
|
||||||
h ◾ idp ≈ whiskerR h idp :> (p ⬝ idp ≈ q ⬝ idp) :=
|
h ◾ idp ≈ whiskerR h idp :> (p ⬝ idp ≈ q ⬝ idp) :=
|
||||||
rec_on h idp
|
rec_on h idp
|
||||||
|
|
||||||
definition concat2_1p {A : Type} {x y : A} {p q : x ≈ y} (h : p ≈ q) :
|
definition concat2_1p {p q : x ≈ y} (h : p ≈ q) :
|
||||||
idp ◾ h ≈ whiskerL idp h :> (idp ⬝ p ≈ idp ⬝ q) :=
|
idp ◾ h ≈ whiskerL idp h :> (idp ⬝ p ≈ idp ⬝ q) :=
|
||||||
rec_on h idp
|
rec_on h idp
|
||||||
|
|
||||||
-- TODO: note, 4 inductions
|
-- TODO: note, 4 inductions
|
||||||
-- The interchange law for concatenation.
|
-- The interchange law for concatenation.
|
||||||
definition concat_concat2 {A : Type} {x y z : A} {p p' p'' : x ≈ y} {q q' q'' : y ≈ z}
|
definition concat_concat2 {p p' p'' : x ≈ y} {q q' q'' : y ≈ z}
|
||||||
(a : p ≈ p') (b : p' ≈ p'') (c : q ≈ q') (d : q' ≈ q'') :
|
(a : p ≈ p') (b : p' ≈ p'') (c : q ≈ q') (d : q' ≈ q'') :
|
||||||
(a ◾ c) ⬝ (b ◾ d) ≈ (a ⬝ b) ◾ (c ⬝ d) :=
|
(a ◾ c) ⬝ (b ◾ d) ≈ (a ⬝ b) ◾ (c ⬝ d) :=
|
||||||
rec_on d (rec_on c (rec_on b (rec_on a idp)))
|
rec_on d (rec_on c (rec_on b (rec_on a idp)))
|
||||||
|
|
||||||
definition concat_whisker {A} {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
|
definition concat_whisker {x y z : A} (p p' : x ≈ y) (q q' : y ≈ z) (a : p ≈ p') (b : q ≈ q') :
|
||||||
(whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') :=
|
(whiskerR a q) ⬝ (whiskerL p' b) ≈ (whiskerL p b) ⬝ (whiskerR a q') :=
|
||||||
rec_on b (rec_on a (concat_1p _)⁻¹)
|
rec_on b (rec_on a (concat_1p _)⁻¹)
|
||||||
|
|
||||||
-- Structure corresponding to the coherence equations of a bicategory.
|
-- Structure corresponding to the coherence equations of a bicategory.
|
||||||
|
|
||||||
-- The "pentagonator": the 3-cell witnessing the associativity pentagon.
|
-- The "pentagonator": the 3-cell witnessing the associativity pentagon.
|
||||||
definition pentagon {A : Type} {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r : x ≈ y) (s : y ≈ z) :
|
definition pentagon {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r : x ≈ y) (s : y ≈ z) :
|
||||||
whiskerL p (concat_p_pp q r s)
|
whiskerL p (concat_p_pp q r s)
|
||||||
⬝ concat_p_pp p (q ⬝ r) s
|
⬝ concat_p_pp p (q ⬝ r) s
|
||||||
⬝ whiskerR (concat_p_pp p q r) s
|
⬝ whiskerR (concat_p_pp p q r) s
|
||||||
|
@ -599,11 +595,11 @@ definition pentagon {A : Type} {v w x y z : A} (p : v ≈ w) (q : w ≈ x) (r :
|
||||||
rec_on s (rec_on r (rec_on q (rec_on p idp)))
|
rec_on s (rec_on r (rec_on q (rec_on p idp)))
|
||||||
|
|
||||||
-- The 3-cell witnessing the left unit triangle.
|
-- The 3-cell witnessing the left unit triangle.
|
||||||
definition triangulator {A : Type} {x y z : A} (p : x ≈ y) (q : y ≈ z) :
|
definition triangulator (p : x ≈ y) (q : y ≈ z) :
|
||||||
concat_p_pp p idp q ⬝ whiskerR (concat_p1 p) q ≈ whiskerL p (concat_1p q) :=
|
concat_p_pp p idp q ⬝ whiskerR (concat_p1 p) q ≈ whiskerL p (concat_1p q) :=
|
||||||
rec_on q (rec_on p idp)
|
rec_on q (rec_on p idp)
|
||||||
|
|
||||||
definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p ⬝ q ≈ q ⬝ p :=
|
definition eckmann_hilton {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p ⬝ q ≈ q ⬝ p :=
|
||||||
(!whiskerR_p1 ◾ !whiskerL_1p)⁻¹
|
(!whiskerR_p1 ◾ !whiskerL_1p)⁻¹
|
||||||
⬝ (!concat_p1 ◾ !concat_p1)
|
⬝ (!concat_p1 ◾ !concat_p1)
|
||||||
⬝ (!concat_1p ◾ !concat_1p)
|
⬝ (!concat_1p ◾ !concat_1p)
|
||||||
|
@ -613,36 +609,35 @@ definition eckmann_hilton {A : Type} {x:A} (p q : idp ≈ idp :> (x ≈ x)) : p
|
||||||
⬝ (!whiskerL_1p ◾ !whiskerR_p1)
|
⬝ (!whiskerL_1p ◾ !whiskerR_p1)
|
||||||
|
|
||||||
-- The action of functions on 2-dimensional paths
|
-- The action of functions on 2-dimensional paths
|
||||||
definition ap02 {A B : Type} (f:A → B) {x y : A} {p q : x ≈ y} (r : p ≈ q) : ap f p ≈ ap f q :=
|
definition ap02 (f:A → B) {x y : A} {p q : x ≈ y} (r : p ≈ q) : ap f p ≈ ap f q :=
|
||||||
rec_on r idp
|
rec_on r idp
|
||||||
|
|
||||||
definition ap02_pp {A B} (f : A → B) {x y : A} {p p' p'' : x ≈ y} (r : p ≈ p') (r' : p' ≈ p'') :
|
definition ap02_pp (f : A → B) {x y : A} {p p' p'' : x ≈ y} (r : p ≈ p') (r' : p' ≈ p'') :
|
||||||
ap02 f (r ⬝ r') ≈ ap02 f r ⬝ ap02 f r' :=
|
ap02 f (r ⬝ r') ≈ ap02 f r ⬝ ap02 f r' :=
|
||||||
rec_on r (rec_on r' idp)
|
rec_on r (rec_on r' idp)
|
||||||
|
|
||||||
definition ap02_p2p {A B} (f : A → B) {x y z : A} {p p' : x ≈ y} {q q' :y ≈ z} (r : p ≈ p')
|
definition ap02_p2p (f : A → B) {x y z : A} {p p' : x ≈ y} {q q' :y ≈ z} (r : p ≈ p')
|
||||||
(s : q ≈ q') :
|
(s : q ≈ q') :
|
||||||
ap02 f (r ◾ s) ≈ ap_pp f p q
|
ap02 f (r ◾ s) ≈ ap_pp f p q
|
||||||
⬝ (ap02 f r ◾ ap02 f s)
|
⬝ (ap02 f r ◾ ap02 f s)
|
||||||
⬝ (ap_pp f p' q')⁻¹ :=
|
⬝ (ap_pp f p' q')⁻¹ :=
|
||||||
rec_on r (rec_on s (rec_on q (rec_on p idp)))
|
rec_on r (rec_on s (rec_on q (rec_on p idp)))
|
||||||
|
|
||||||
-- rec_on r (rec_on s (rec_on p (rec_on q idp)))
|
-- rec_on r (rec_on s (rec_on p (rec_on q idp)))
|
||||||
|
|
||||||
definition apD02 {A : Type} {B : A → Type} {x y : A} {p q : x ≈ y} (f : Π x, B x) (r : p ≈ q) :
|
definition apD02 {p q : x ≈ y} (f : Π x, P x) (r : p ≈ q) :
|
||||||
apD f p ≈ transport2 B r (f x) ⬝ apD f q :=
|
apD f p ≈ transport2 P r (f x) ⬝ apD f q :=
|
||||||
rec_on r (concat_1p _)⁻¹
|
rec_on r (concat_1p _)⁻¹
|
||||||
|
|
||||||
-- And now for a lemma whose statement is much longer than its proof.
|
-- And now for a lemma whose statement is much longer than its proof.
|
||||||
definition apD02_pp {A} (B : A → Type) (f : Π x:A, B x) {x y : A}
|
definition apD02_pp (P : A → Type) (f : Π x:A, P x) {x y : A}
|
||||||
{p1 p2 p3 : x ≈ y} (r1 : p1 ≈ p2) (r2 : p2 ≈ p3) :
|
{p1 p2 p3 : x ≈ y} (r1 : p1 ≈ p2) (r2 : p2 ≈ p3) :
|
||||||
apD02 f (r1 ⬝ r2) ≈ apD02 f r1
|
apD02 f (r1 ⬝ r2) ≈ apD02 f r1
|
||||||
⬝ whiskerL (transport2 B r1 (f x)) (apD02 f r2)
|
⬝ whiskerL (transport2 P r1 (f x)) (apD02 f r2)
|
||||||
⬝ concat_p_pp _ _ _
|
⬝ concat_p_pp _ _ _
|
||||||
⬝ (whiskerR ((transport2_p2p B r1 r2 (f x))⁻¹) (apD f p3)) :=
|
⬝ (whiskerR ((transport2_p2p P r1 r2 (f x))⁻¹) (apD f p3)) :=
|
||||||
rec_on r2 (rec_on r1 (rec_on p1 idp))
|
rec_on r2 (rec_on r1 (rec_on p1 idp))
|
||||||
|
end path
|
||||||
section
|
namespace path
|
||||||
variables {A B C D E : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D}
|
variables {A B C D E : Type} {a a' : A} {b b' : B} {c c' : C} {d d' : D}
|
||||||
|
|
||||||
theorem congr_arg2 (f : A → B → C) (Ha : a ≈ a') (Hb : b ≈ b') : f a b ≈ f a' b' :=
|
theorem congr_arg2 (f : A → B → C) (Ha : a ≈ a') (Hb : b ≈ b') : f a b ≈ f a' b' :=
|
||||||
|
@ -656,9 +651,9 @@ theorem congr_arg4 (f : A → B → C → D → E) (Ha : a ≈ a') (Hb : b ≈ b
|
||||||
: f a b c d ≈ f a' b' c' d' :=
|
: f a b c d ≈ f a' b' c' d' :=
|
||||||
rec_on Ha (congr_arg3 (f a) Hb Hc Hd)
|
rec_on Ha (congr_arg3 (f a) Hb Hc Hd)
|
||||||
|
|
||||||
end
|
end path
|
||||||
|
|
||||||
section
|
namespace path
|
||||||
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type}
|
||||||
{E : Πa b c, D a b c → Type} {F : Type}
|
{E : Πa b c, D a b c → Type} {F : Type}
|
||||||
variables {a a' : A}
|
variables {a a' : A}
|
||||||
|
@ -670,8 +665,6 @@ theorem dcongr_arg2 (f : Πa, B a → F) (Ha : a ≈ a') (Hb : Ha ▹ b ≈ b')
|
||||||
: f a b ≈ f a' b' :=
|
: f a b ≈ f a' b' :=
|
||||||
rec_on Hb (rec_on Ha idp)
|
rec_on Hb (rec_on Ha idp)
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
/- From the Coq version:
|
/- From the Coq version:
|
||||||
|
|
||||||
-- ** Tactics, hints, and aliases
|
-- ** Tactics, hints, and aliases
|
||||||
|
@ -724,5 +717,4 @@ Ltac hott_simpl :=
|
||||||
autorewrite with paths in * |- * ; auto with path_hints.
|
autorewrite with paths in * |- * ; auto with path_hints.
|
||||||
|
|
||||||
-/
|
-/
|
||||||
|
|
||||||
end path
|
end path
|
||||||
|
|
|
@ -78,12 +78,12 @@ namespace truncation
|
||||||
|
|
||||||
variables {A B : Type}
|
variables {A B : Type}
|
||||||
|
|
||||||
-- maybe rename to is_trunc_succ.mk
|
-- TODO: rename to is_trunc_succ
|
||||||
definition is_trunc_succ (A : Type) (n : trunc_index) [H : ∀x y : A, is_trunc n (x ≈ y)]
|
definition is_trunc_succ (A : Type) (n : trunc_index) [H : ∀x y : A, is_trunc n (x ≈ y)]
|
||||||
: is_trunc n.+1 A :=
|
: is_trunc n.+1 A :=
|
||||||
is_trunc.mk (λ x y, !is_trunc.to_internal)
|
is_trunc.mk (λ x y, !is_trunc.to_internal)
|
||||||
|
|
||||||
-- maybe rename to is_trunc_succ.elim
|
-- TODO: rename to is_trunc_path
|
||||||
definition succ_is_trunc (n : trunc_index) [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x ≈ y) :=
|
definition succ_is_trunc (n : trunc_index) [H : is_trunc (n.+1) A] (x y : A) : is_trunc n (x ≈ y) :=
|
||||||
is_trunc.mk (!is_trunc.to_internal x y)
|
is_trunc.mk (!is_trunc.to_internal x y)
|
||||||
|
|
||||||
|
|
|
@ -10,30 +10,30 @@ import .sigma .pi
|
||||||
open path sigma sigma.ops equiv is_equiv
|
open path sigma sigma.ops equiv is_equiv
|
||||||
|
|
||||||
|
|
||||||
inductive W {A : Type} (B : A → Type) :=
|
inductive Wtype {A : Type} (B : A → Type) :=
|
||||||
sup : Π(a : A), (B a → W B) → W B
|
sup : Π(a : A), (B a → Wtype B) → Wtype B
|
||||||
|
|
||||||
namespace W
|
namespace Wtype
|
||||||
notation `WW` binders `,` r:(scoped B, W B) := r
|
notation `W` binders `,` r:(scoped B, Wtype B) := r
|
||||||
|
|
||||||
universe variables l k
|
universe variables u v
|
||||||
variables {A A' : Type.{l}} {B B' : A → Type.{k}} {C : Π(a : A), B a → Type}
|
variables {A A' : Type.{u}} {B B' : A → Type.{v}} {C : Π(a : A), B a → Type}
|
||||||
{a a' : A} {f : B a → W B} {f' : B a' → W B} {w w' : WW(a : A), B a}
|
{a a' : A} {f : B a → W a, B a} {f' : B a' → W a, B a} {w w' : W(a : A), B a}
|
||||||
|
|
||||||
definition pr1 (w : WW(a : A), B a) : A :=
|
definition pr1 (w : W(a : A), B a) : A :=
|
||||||
W.rec_on w (λa f IH, a)
|
Wtype.rec_on w (λa f IH, a)
|
||||||
|
|
||||||
definition pr2 (w : WW(a : A), B a) : B (pr1 w) → WW(a : A), B a :=
|
definition pr2 (w : W(a : A), B a) : B (pr1 w) → W(a : A), B a :=
|
||||||
W.rec_on w (λa f IH, f)
|
Wtype.rec_on w (λa f IH, f)
|
||||||
|
|
||||||
namespace ops
|
namespace ops
|
||||||
postfix `.1`:(max+1) := W.pr1
|
postfix `.1`:(max+1) := Wtype.pr1
|
||||||
postfix `.2`:(max+1) := W.pr2
|
postfix `.2`:(max+1) := Wtype.pr2
|
||||||
notation `⟨` a `,` f `⟩`:0 := W.sup a f --input ⟨ ⟩ as \< \>
|
notation `⟨` a `,` f `⟩`:0 := Wtype.sup a f --input ⟨ ⟩ as \< \>
|
||||||
end ops
|
end ops
|
||||||
open ops
|
open ops
|
||||||
|
|
||||||
protected definition eta (w : WW a, B a) : ⟨w.1 , w.2⟩ ≈ w :=
|
protected definition eta (w : W a, B a) : ⟨w.1 , w.2⟩ ≈ w :=
|
||||||
cases_on w (λa f, idp)
|
cases_on w (λa f, idp)
|
||||||
|
|
||||||
definition path_W_sup (p : a ≈ a') (q : p ▹ f ≈ f') : ⟨a, f⟩ ≈ ⟨a', f'⟩ :=
|
definition path_W_sup (p : a ≈ a') (q : p ▹ f ≈ f') : ⟨a, f⟩ ≈ ⟨a', f'⟩ :=
|
||||||
|
@ -112,18 +112,18 @@ namespace W
|
||||||
: transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) ≈ transport B' pq.1 :=
|
: transport (λx, B' x.1) (@path_W_uncurried A B w w' pq) ≈ transport B' pq.1 :=
|
||||||
destruct pq transport_pr1_path_W
|
destruct pq transport_pr1_path_W
|
||||||
|
|
||||||
definition isequiv_path_W /-[instance]-/ (w w' : W B)
|
definition isequiv_path_W /-[instance]-/ (w w' : W a, B a)
|
||||||
: is_equiv (@path_W_uncurried A B w w') :=
|
: is_equiv (@path_W_uncurried A B w w') :=
|
||||||
adjointify path_W_uncurried
|
adjointify path_W_uncurried
|
||||||
(λp, dpair (p..1) (p..2))
|
(λp, dpair (p..1) (p..2))
|
||||||
eta_path_W_uncurried
|
eta_path_W_uncurried
|
||||||
sup_path_W_uncurried
|
sup_path_W_uncurried
|
||||||
|
|
||||||
definition equiv_path_W (w w' : W B) : (Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2) ≃ (w ≈ w') :=
|
definition equiv_path_W (w w' : W a, B a) : (Σ(p : w.1 ≈ w'.1), p ▹ w.2 ≈ w'.2) ≃ (w ≈ w') :=
|
||||||
equiv.mk path_W_uncurried !isequiv_path_W
|
equiv.mk path_W_uncurried !isequiv_path_W
|
||||||
|
|
||||||
definition double_induction_on {P : W B → W B → Type} (w w' : W B)
|
definition double_induction_on {P : (W a, B a) → (W a, B a) → Type} (w w' : W a, B a)
|
||||||
(H : ∀ (a a' : A) (f : B a → W B) (f' : B a' → W B),
|
(H : ∀ (a a' : A) (f : B a → W a, B a) (f' : B a' → W a, B a),
|
||||||
(∀ (b : B a) (b' : B a'), P (f b) (f' b')) → P (sup a f) (sup a' f')) : P w w' :=
|
(∀ (b : B a) (b' : B a'), P (f b) (f' b')) → P (sup a f) (sup a' f')) : P w w' :=
|
||||||
begin
|
begin
|
||||||
revert w',
|
revert w',
|
||||||
|
@ -135,8 +135,8 @@ namespace W
|
||||||
|
|
||||||
/- truncatedness -/
|
/- truncatedness -/
|
||||||
open truncation
|
open truncation
|
||||||
definition trunc_W [FUN : funext.{k (max 1 l k)}] (n : trunc_index) [HA : is_trunc (n.+1) A]
|
definition trunc_W [FUN : funext.{v (max 1 u v)}] (n : trunc_index) [HA : is_trunc (n.+1) A]
|
||||||
: is_trunc (n.+1) (WW a, B a) :=
|
: is_trunc (n.+1) (W a, B a) :=
|
||||||
begin
|
begin
|
||||||
fapply is_trunc_succ, intros (w, w'),
|
fapply is_trunc_succ, intros (w, w'),
|
||||||
apply (double_induction_on w w'), intros (a, a', f, f', IH),
|
apply (double_induction_on w w'), intros (a, a', f, f', IH),
|
||||||
|
@ -146,8 +146,8 @@ namespace W
|
||||||
fapply (succ_is_trunc n),
|
fapply (succ_is_trunc n),
|
||||||
intro p, revert IH, generalize f', --change to revert after simpl
|
intro p, revert IH, generalize f', --change to revert after simpl
|
||||||
apply (path.rec_on p), intros (f', IH),
|
apply (path.rec_on p), intros (f', IH),
|
||||||
apply (@pi.trunc_path_pi FUN (B a) (λx, W B) n f f'), intro b,
|
apply pi.trunc_path_pi, intro b,
|
||||||
apply IH
|
apply IH
|
||||||
end
|
end
|
||||||
|
|
||||||
end W
|
end Wtype
|
||||||
|
|
|
@ -7,52 +7,116 @@ Ported from Coq HoTT
|
||||||
Theorems about pi-types (dependent function spaces)
|
Theorems about pi-types (dependent function spaces)
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import ..trunc ..axioms.funext
|
import ..trunc ..axioms.funext .sigma
|
||||||
open path equiv is_equiv funext
|
open path equiv is_equiv funext
|
||||||
|
|
||||||
namespace pi
|
namespace pi
|
||||||
universe variables l k
|
universe variables l k
|
||||||
variables [H : funext.{l k}] {A : Type.{l}} {B : A → Type.{k}} {C : Πa, B a → Type}
|
variables {A A' : Type.{l}} {B : A → Type.{k}} {C : Πa, B a → Type}
|
||||||
{D : Πa b, C a b → Type}
|
{D : Πa b, C a b → Type}
|
||||||
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g h : Πa, B a}
|
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {f g : Πa, B a}
|
||||||
include H
|
|
||||||
/- Paths -/
|
/- Paths -/
|
||||||
|
|
||||||
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f == g].
|
/- Paths [p : f ≈ g] in a function type [Πx:X, P x] are equivalent to functions taking values in path types, [H : Πx:X, f x ≈ g x], or concisely, [H : f ∼ g].
|
||||||
|
|
||||||
This equivalence, however, is just the combination of [apD10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/
|
This equivalence, however, is just the combination of [apD10] and function extensionality [funext], and as such, [path_forall], et seq. are given in axioms.funext and path: -/
|
||||||
|
|
||||||
/- Now we show how these things compute. -/
|
/- Now we show how these things compute. -/
|
||||||
|
|
||||||
definition equiv_apD10 : (f ≈ g) ≃ (f ∼ g) :=
|
definition apD10_path_pi [H : funext] (h : f ∼ g) : apD10 (path_pi h) ∼ h :=
|
||||||
|
apD10 (retr apD10 h)
|
||||||
|
|
||||||
|
definition path_pi_eta [H : funext] (p : f ≈ g) : path_pi (apD10 p) ≈ p :=
|
||||||
|
sect apD10 p
|
||||||
|
|
||||||
|
definition path_pi_idp [H : funext] : path_pi (λx : A, idpath (f x)) ≈ idpath f :=
|
||||||
|
!path_pi_eta
|
||||||
|
|
||||||
|
/- The identification of the path space of a dependent function space, up to equivalence, is of course just funext. -/
|
||||||
|
|
||||||
|
definition path_equiv_homotopy [H : funext] (f g : Πx, B x) : (f ≈ g) ≃ (f ∼ g) :=
|
||||||
equiv.mk _ !funext.ap
|
equiv.mk _ !funext.ap
|
||||||
|
|
||||||
|
definition is_equiv_path_pi [instance] [H : funext] (f g : Πx, B x)
|
||||||
|
: is_equiv (@path_pi _ _ _ f g) :=
|
||||||
|
inv_closed apD10
|
||||||
|
|
||||||
|
definition homotopy_equiv_path [H : funext] (f g : Πx, B x) : (f ∼ g) ≃ (f ≈ g) :=
|
||||||
|
equiv.mk _ !is_equiv_path_pi
|
||||||
|
|
||||||
|
|
||||||
|
/- Transport -/
|
||||||
|
|
||||||
|
protected definition transport (p : a ≈ a') (f : Π(b : B a), C a b)
|
||||||
|
: (transport (λa, Π(b : B a), C a b) p f)
|
||||||
|
∼ (λb, transport (C a') !transport_pV (transportD _ _ p _ (f (p⁻¹ ▹ b)))) :=
|
||||||
|
path.rec_on p (λx, idp)
|
||||||
|
|
||||||
|
/- A special case of [transport_pi] where the type [B] does not depend on [A],
|
||||||
|
and so it is just a fixed type [B]. -/
|
||||||
|
definition transport_constant {C : A → A' → Type} (p : a ≈ a') (f : Π(b : A'), C a b)
|
||||||
|
: (path.transport (λa, Π(b : A'), C a b) p f) ∼ (λb, path.transport (λa, C a b) p (f b)) :=
|
||||||
|
path.rec_on p (λx, idp)
|
||||||
|
|
||||||
|
/- Maps on paths -/
|
||||||
|
|
||||||
|
/- The action of maps given by lambda. -/
|
||||||
|
definition ap_lambdaD [H : funext] {C : A' → Type} (p : a ≈ a') (f : Πa b, C b) :
|
||||||
|
ap (λa b, f a b) p ≈ path_pi (λb, ap (λa, f a b) p) :=
|
||||||
|
begin
|
||||||
|
apply (path.rec_on p),
|
||||||
|
apply inverse,
|
||||||
|
apply path_pi_idp
|
||||||
|
end
|
||||||
|
|
||||||
|
/- Dependent paths -/
|
||||||
|
|
||||||
|
/- with more implicit arguments the conclusion of the following theorem is
|
||||||
|
(Π(b : B a), transportD B C p b (f b) ≈ g (path.transport B p b)) ≃
|
||||||
|
(path.transport (λa, Π(b : B a), C a b) p f ≈ g) -/
|
||||||
|
definition dpath_pi [H : funext] (p : a ≈ a') (f : Π(b : B a), C a b) (g : Π(b' : B a'), C a' b')
|
||||||
|
: (Π(b : B a), p ▹D (f b) ≈ g (p ▹ b)) ≃ (p ▹ f ≈ g) :=
|
||||||
|
path.rec_on p (λg, !homotopy_equiv_path) g
|
||||||
|
|
||||||
|
section open sigma.ops
|
||||||
|
/- more implicit arguments:
|
||||||
|
(Π(b : B a), path.transport C (sigma.path p idp) (f b) ≈ g (p ▹ b)) ≃
|
||||||
|
(Π(b : B a), transportD B (λ(a : A) (b : B a), C ⟨a, b⟩) p b (f b) ≈ g (path.transport B p b)) -/
|
||||||
|
definition dpath_pi_sigma {C : (Σa, B a) → Type} (p : a ≈ a')
|
||||||
|
(f : Π(b : B a), C ⟨a, b⟩) (g : Π(b' : B a'), C ⟨a', b'⟩) :
|
||||||
|
(Π(b : B a), (sigma.path p idp) ▹ (f b) ≈ g (p ▹ b)) ≃ (Π(b : B a), p ▹D (f b) ≈ g (p ▹ b)) :=
|
||||||
|
path.rec_on p (λg, !equiv.refl) g
|
||||||
|
end
|
||||||
|
|
||||||
|
/- truncation -/
|
||||||
|
|
||||||
open truncation
|
open truncation
|
||||||
definition trunc_pi [instance] (B : A → Type.{k}) (n : trunc_index)
|
definition trunc_pi [instance] [H : funext.{l k}] (B : A → Type.{k}) (n : trunc_index)
|
||||||
[H : Πa, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
|
[H : ∀a, is_trunc n (B a)] : is_trunc n (Πa, B a) :=
|
||||||
begin
|
begin
|
||||||
reverts (B, H),
|
reverts (B, H),
|
||||||
apply (truncation.trunc_index.rec_on n),
|
apply (trunc_index.rec_on n),
|
||||||
intros (B, H),
|
intros (B, H),
|
||||||
fapply is_contr.mk,
|
fapply is_contr.mk,
|
||||||
intro a, apply center, apply H, --remove "apply H" when term synthesis works correctly
|
intro a, apply center, apply H, --remove "apply H" when term synthesis works correctly
|
||||||
intro f, apply path_forall,
|
intro f, apply path_pi,
|
||||||
intro x, apply (contr (f x)),
|
intro x, apply (contr (f x)),
|
||||||
intros (n, IH, B, H),
|
intros (n, IH, B, H),
|
||||||
fapply is_trunc_succ, intros (f, g),
|
fapply is_trunc_succ, intros (f, g),
|
||||||
fapply trunc_equiv',
|
fapply trunc_equiv',
|
||||||
apply equiv.symm, apply equiv_apD10,
|
apply equiv.symm, apply path_equiv_homotopy,
|
||||||
apply IH,
|
apply IH,
|
||||||
intro a,
|
intro a,
|
||||||
show is_trunc n (f a ≈ g a), from
|
show is_trunc n (f a ≈ g a), from
|
||||||
succ_is_trunc n (f a) (g a)
|
succ_is_trunc n (f a) (g a)
|
||||||
end
|
end
|
||||||
|
|
||||||
definition trunc_path_pi [instance] (n : trunc_index) (f g : Πa, B a)
|
definition trunc_path_pi [instance] [H : funext.{l k}] (n : trunc_index) (f g : Πa, B a)
|
||||||
[H : ∀a, is_trunc n (f a ≈ g a)] : is_trunc n (f ≈ g) :=
|
[H : ∀a, is_trunc n (f a ≈ g a)] : is_trunc n (f ≈ g) :=
|
||||||
begin
|
begin
|
||||||
apply trunc_equiv', apply equiv.symm,
|
apply trunc_equiv', apply equiv.symm,
|
||||||
apply equiv_apD10,
|
apply path_equiv_homotopy,
|
||||||
apply trunc_pi, exact H,
|
apply trunc_pi, exact H,
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
|
@ -15,7 +15,8 @@ variables {A A' B B' C D : Type}
|
||||||
|
|
||||||
namespace prod
|
namespace prod
|
||||||
|
|
||||||
definition eta_prod (u : A × B) : (pr₁ u , pr₂ u) ≈ u :=
|
-- prod.eta is already used for the eta rule for strict equality
|
||||||
|
protected definition peta (u : A × B) : (pr₁ u , pr₂ u) ≈ u :=
|
||||||
destruct u (λu1 u2, idp)
|
destruct u (λu1 u2, idp)
|
||||||
|
|
||||||
definition pair_path (pa : a ≈ a') (pb : b ≈ b') : (a , b) ≈ (a' , b') :=
|
definition pair_path (pa : a ≈ a') (pb : b ≈ b') : (a , b) ≈ (a' , b') :=
|
||||||
|
@ -25,25 +26,22 @@ namespace prod
|
||||||
begin
|
begin
|
||||||
apply (prod.rec_on u), intros (a₁, b₁),
|
apply (prod.rec_on u), intros (a₁, b₁),
|
||||||
apply (prod.rec_on v), intros (a₂, b₂, H₁, H₂),
|
apply (prod.rec_on v), intros (a₂, b₂, H₁, H₂),
|
||||||
apply (transport _ (eta_prod (a₁, b₁))),
|
apply (transport _ (peta (a₁, b₁))),
|
||||||
apply (transport _ (eta_prod (a₂, b₂))),
|
apply (transport _ (peta (a₂, b₂))),
|
||||||
apply (pair_path H₁ H₂),
|
apply (pair_path H₁ H₂),
|
||||||
end
|
end
|
||||||
|
|
||||||
/- Symmetry -/
|
/- Symmetry -/
|
||||||
|
|
||||||
definition isequiv_prod_symm [instance] (A B : Type) : is_equiv (@flip A B) :=
|
definition isequiv_flip [instance] (A B : Type) : is_equiv (@flip A B) :=
|
||||||
adjointify flip
|
adjointify flip
|
||||||
flip
|
flip
|
||||||
(λu, destruct u (λb a, idp))
|
(λu, destruct u (λb a, idp))
|
||||||
(λu, destruct u (λa b, idp))
|
(λu, destruct u (λa b, idp))
|
||||||
|
|
||||||
definition equiv_prod_symm (A B : Type) : A × B ≃ B × A :=
|
definition symm_equiv (A B : Type) : A × B ≃ B × A :=
|
||||||
equiv.mk flip _
|
equiv.mk flip _
|
||||||
|
|
||||||
-- Pairs preserve truncatedness
|
-- trunc_prod is defined in sigma
|
||||||
definition trunc_prod [instance] {A B : Type} (n : trunc_index) :
|
|
||||||
(is_trunc n A) → (is_trunc n B) → is_trunc n (A × B)
|
|
||||||
:= sorry --Assignment for Floris
|
|
||||||
|
|
||||||
end prod
|
end prod
|
||||||
|
|
|
@ -7,193 +7,194 @@ Ported from Coq HoTT
|
||||||
Theorems about sigma-types (dependent sums)
|
Theorems about sigma-types (dependent sums)
|
||||||
-/
|
-/
|
||||||
|
|
||||||
import ..trunc .prod
|
import ..trunc .prod ..axioms.funext
|
||||||
open path sigma sigma.ops equiv is_equiv
|
open path sigma sigma.ops equiv is_equiv
|
||||||
|
|
||||||
namespace sigma
|
namespace sigma
|
||||||
-- remove the ₁'s (globally)
|
infixr [local] ∘ := function.compose --remove
|
||||||
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
|
variables {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type}
|
||||||
{D : Πa b, C a b → Type}
|
{D : Πa b, C a b → Type}
|
||||||
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
|
{a a' a'' : A} {b b₁ b₂ : B a} {b' : B a'} {b'' : B a''} {u v w : Σa, B a}
|
||||||
|
|
||||||
definition eta_sigma (u : Σa, B a) : ⟨u.1 , u.2⟩ ≈ u :=
|
-- sigma.eta is already used for the eta rule for strict equality
|
||||||
|
protected definition peta (u : Σa, B a) : ⟨u.1 , u.2⟩ ≈ u :=
|
||||||
destruct u (λu1 u2, idp)
|
destruct u (λu1 u2, idp)
|
||||||
|
|
||||||
definition eta2_sigma (u : Σa b, C a b) : ⟨u.1, u.2.1, u.2.2⟩ ≈ u :=
|
definition eta2 (u : Σa b, C a b) : ⟨u.1, u.2.1, u.2.2⟩ ≈ u :=
|
||||||
destruct u (λu1 u2, destruct u2 (λu21 u22, idp))
|
destruct u (λu1 u2, destruct u2 (λu21 u22, idp))
|
||||||
|
|
||||||
definition eta3_sigma (u : Σa b c, D a b c) : ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ ≈ u :=
|
definition eta3 (u : Σa b c, D a b c) : ⟨u.1, u.2.1, u.2.2.1, u.2.2.2⟩ ≈ u :=
|
||||||
destruct u (λu1 u2, destruct u2 (λu21 u22, destruct u22 (λu221 u222, idp)))
|
destruct u (λu1 u2, destruct u2 (λu21 u22, destruct u22 (λu221 u222, idp)))
|
||||||
|
|
||||||
definition path_sigma_dpair (p : a ≈ a') (q : p ▹ b ≈ b') : dpair a b ≈ dpair a' b' :=
|
definition dpair_eq_dpair (p : a ≈ a') (q : p ▹ b ≈ b') : dpair a b ≈ dpair a' b' :=
|
||||||
path.rec_on p (λb b' q, path.rec_on q idp) b b' q
|
path.rec_on p (λb b' q, path.rec_on q idp) b b' q
|
||||||
|
|
||||||
/- In Coq they often have to give u and v explicitly -/
|
/- In Coq they often have to give u and v explicitly -/
|
||||||
definition path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : u ≈ v :=
|
protected definition path (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : u ≈ v :=
|
||||||
destruct u
|
destruct u
|
||||||
(λu1 u2, destruct v (λ v1 v2, path_sigma_dpair))
|
(λu1 u2, destruct v (λ v1 v2, dpair_eq_dpair))
|
||||||
p q
|
p q
|
||||||
|
|
||||||
/- Projections of paths from a total space -/
|
/- Projections of paths from a total space -/
|
||||||
|
|
||||||
definition pr1_path (p : u ≈ v) : u.1 ≈ v.1 :=
|
definition path_pr1 (p : u ≈ v) : u.1 ≈ v.1 :=
|
||||||
ap dpr1 p
|
ap dpr1 p
|
||||||
|
|
||||||
postfix `..1`:(max+1) := pr1_path
|
postfix `..1`:(max+1) := path_pr1
|
||||||
|
|
||||||
definition pr2_path (p : u ≈ v) : p..1 ▹ u.2 ≈ v.2 :=
|
definition path_pr2 (p : u ≈ v) : p..1 ▹ u.2 ≈ v.2 :=
|
||||||
path.rec_on p idp
|
path.rec_on p idp
|
||||||
--Coq uses the following proof, which only computes if u,v are dpairs AND p is idp
|
--Coq uses the following proof, which only computes if u,v are dpairs AND p is idp
|
||||||
--(transport_compose B dpr1 p u.2)⁻¹ ⬝ apD dpr2 p
|
--(transport_compose B dpr1 p u.2)⁻¹ ⬝ apD dpr2 p
|
||||||
|
|
||||||
postfix `..2`:(max+1) := pr2_path
|
postfix `..2`:(max+1) := path_pr2
|
||||||
|
|
||||||
definition dpair_path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
|
definition dpair_sigma_path (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
|
||||||
: dpair (path_sigma p q)..1 (path_sigma p q)..2 ≈ ⟨p, q⟩ :=
|
: dpair (sigma.path p q)..1 (sigma.path p q)..2 ≈ ⟨p, q⟩ :=
|
||||||
begin
|
begin
|
||||||
generalize q, generalize p,
|
reverts (p, q),
|
||||||
apply (destruct u), intros (u1, u2),
|
apply (destruct u), intros (u1, u2),
|
||||||
apply (destruct v), intros (v1, v2, p), generalize v2,
|
apply (destruct v), intros (v1, v2, p), generalize v2, --change to revert
|
||||||
apply (path.rec_on p), intros (v2, q),
|
apply (path.rec_on p), intros (v2, q),
|
||||||
apply (path.rec_on q), apply idp
|
apply (path.rec_on q), apply idp
|
||||||
end
|
end
|
||||||
|
|
||||||
definition pr1_path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : (path_sigma p q)..1 ≈ p :=
|
definition sigma_path_pr1 (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2) : (sigma.path p q)..1 ≈ p :=
|
||||||
(!dpair_path_sigma)..1
|
(!dpair_sigma_path)..1
|
||||||
|
|
||||||
definition pr2_path_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
|
definition sigma_path_pr2 (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
|
||||||
: pr1_path_sigma p q ▹ (path_sigma p q)..2 ≈ q :=
|
: sigma_path_pr1 p q ▹ (sigma.path p q)..2 ≈ q :=
|
||||||
(!dpair_path_sigma)..2
|
(!dpair_sigma_path)..2
|
||||||
|
|
||||||
definition eta_path_sigma (p : u ≈ v) : path_sigma (p..1) (p..2) ≈ p :=
|
definition sigma_path_eta (p : u ≈ v) : sigma.path (p..1) (p..2) ≈ p :=
|
||||||
begin
|
begin
|
||||||
apply (path.rec_on p),
|
apply (path.rec_on p),
|
||||||
apply (destruct u), intros (u1, u2),
|
apply (destruct u), intros (u1, u2),
|
||||||
apply idp
|
apply idp
|
||||||
end
|
end
|
||||||
|
|
||||||
definition transport_pr1_path_sigma {B' : A → Type} (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
|
definition transport_dpr1_sigma_path {B' : A → Type} (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
|
||||||
: transport (λx, B' x.1) (path_sigma p q) ≈ transport B' p :=
|
: transport (λx, B' x.1) (sigma.path p q) ≈ transport B' p :=
|
||||||
begin
|
begin
|
||||||
generalize q, generalize p,
|
reverts (p, q),
|
||||||
apply (destruct u), intros (u1, u2),
|
apply (destruct u), intros (u1, u2),
|
||||||
apply (destruct v), intros (v1, v2, p), generalize v2,
|
apply (destruct v), intros (v1, v2, p), generalize v2,
|
||||||
apply (path.rec_on p), intros (v2, q),
|
apply (path.rec_on p), intros (v2, q),
|
||||||
apply (path.rec_on q), apply idp
|
apply (path.rec_on q), apply idp
|
||||||
end
|
end
|
||||||
|
|
||||||
/- the uncurried version of path_sigma. We will prove that this is an equivalence -/
|
/- the uncurried version of sigma_path. We will prove that this is an equivalence -/
|
||||||
|
|
||||||
definition path_sigma_uncurried (pq : Σ(p : dpr1 u ≈ dpr1 v), p ▹ (dpr2 u) ≈ dpr2 v) : u ≈ v :=
|
definition sigma_path_uncurried (pq : Σ(p : dpr1 u ≈ dpr1 v), p ▹ (dpr2 u) ≈ dpr2 v) : u ≈ v :=
|
||||||
destruct pq path_sigma
|
destruct pq sigma.path
|
||||||
|
|
||||||
definition dpair_path_sigma_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
definition dpair_sigma_path_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
||||||
: dpair (path_sigma_uncurried pq)..1 (path_sigma_uncurried pq)..2 ≈ pq :=
|
: dpair (sigma_path_uncurried pq)..1 (sigma_path_uncurried pq)..2 ≈ pq :=
|
||||||
destruct pq dpair_path_sigma
|
destruct pq dpair_sigma_path
|
||||||
|
|
||||||
definition pr1_path_sigma_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
definition sigma_path_pr1_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
||||||
: (path_sigma_uncurried pq)..1 ≈ pq.1 :=
|
: (sigma_path_uncurried pq)..1 ≈ pq.1 :=
|
||||||
(!dpair_path_sigma_uncurried)..1
|
(!dpair_sigma_path_uncurried)..1
|
||||||
|
|
||||||
definition pr2_path_sigma_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
definition sigma_path_pr2_uncurried (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
||||||
: (pr1_path_sigma_uncurried pq) ▹ (path_sigma_uncurried pq)..2 ≈ pq.2 :=
|
: (sigma_path_pr1_uncurried pq) ▹ (sigma_path_uncurried pq)..2 ≈ pq.2 :=
|
||||||
(!dpair_path_sigma_uncurried)..2
|
(!dpair_sigma_path_uncurried)..2
|
||||||
|
|
||||||
definition eta_path_sigma_uncurried (p : u ≈ v) : path_sigma_uncurried (dpair p..1 p..2) ≈ p :=
|
definition sigma_path_eta_uncurried (p : u ≈ v) : sigma_path_uncurried (dpair p..1 p..2) ≈ p :=
|
||||||
!eta_path_sigma
|
!sigma_path_eta
|
||||||
|
|
||||||
definition transport_pr1_path_sigma_uncurried {B' : A → Type} (pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
definition transport_sigma_path_dpr1_uncurried {B' : A → Type}
|
||||||
: transport (λx, B' x.1) (@path_sigma_uncurried A B u v pq) ≈ transport B' pq.1 :=
|
(pq : Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2)
|
||||||
destruct pq transport_pr1_path_sigma
|
: transport (λx, B' x.1) (@sigma_path_uncurried A B u v pq) ≈ transport B' pq.1 :=
|
||||||
|
destruct pq transport_dpr1_sigma_path
|
||||||
|
|
||||||
definition isequiv_path_sigma /-[instance]-/ (u v : Σa, B a)
|
definition is_equiv_sigma_path [instance] (u v : Σa, B a)
|
||||||
: is_equiv (@path_sigma_uncurried A B u v) :=
|
: is_equiv (@sigma_path_uncurried A B u v) :=
|
||||||
adjointify path_sigma_uncurried
|
adjointify sigma_path_uncurried
|
||||||
(λp, ⟨p..1, p..2⟩)
|
(λp, ⟨p..1, p..2⟩)
|
||||||
eta_path_sigma_uncurried
|
sigma_path_eta_uncurried
|
||||||
dpair_path_sigma_uncurried
|
dpair_sigma_path_uncurried
|
||||||
|
|
||||||
definition equiv_path_sigma (u v : Σa, B a) : (Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2) ≃ (u ≈ v) :=
|
definition equiv_sigma_path (u v : Σa, B a) : (Σ(p : u.1 ≈ v.1), p ▹ u.2 ≈ v.2) ≃ (u ≈ v) :=
|
||||||
equiv.mk path_sigma_uncurried !isequiv_path_sigma
|
equiv.mk sigma_path_uncurried !is_equiv_sigma_path
|
||||||
|
|
||||||
definition path_sigma_dpair_pp_pp (p1 : a ≈ a' ) (q1 : p1 ▹ b ≈ b' )
|
definition dpair_eq_dpair_pp_pp (p1 : a ≈ a' ) (q1 : p1 ▹ b ≈ b' )
|
||||||
(p2 : a' ≈ a'') (q2 : p2 ▹ b' ≈ b'') :
|
(p2 : a' ≈ a'') (q2 : p2 ▹ b' ≈ b'') :
|
||||||
path_sigma_dpair (p1 ⬝ p2) (transport_pp B p1 p2 b ⬝ ap (transport B p2) q1 ⬝ q2)
|
dpair_eq_dpair (p1 ⬝ p2) (transport_pp B p1 p2 b ⬝ ap (transport B p2) q1 ⬝ q2)
|
||||||
≈ path_sigma_dpair p1 q1 ⬝ path_sigma_dpair p2 q2 :=
|
≈ dpair_eq_dpair p1 q1 ⬝ dpair_eq_dpair p2 q2 :=
|
||||||
begin
|
begin
|
||||||
generalize q2, generalize q1, generalize b'', generalize p2, generalize b',
|
reverts (b', p2, b'', q1, q2),
|
||||||
apply (path.rec_on p1), intros (b', p2),
|
apply (path.rec_on p1), intros (b', p2),
|
||||||
apply (path.rec_on p2), intros (b'', q1),
|
apply (path.rec_on p2), intros (b'', q1),
|
||||||
apply (path.rec_on q1), intro q2,
|
apply (path.rec_on q1), intro q2,
|
||||||
apply (path.rec_on q2), apply idp
|
apply (path.rec_on q2), apply idp
|
||||||
end
|
end
|
||||||
|
|
||||||
definition path_sigma_pp_pp (p1 : u.1 ≈ v.1) (q1 : p1 ▹ u.2 ≈ v.2)
|
definition sigma_path_pp_pp (p1 : u.1 ≈ v.1) (q1 : p1 ▹ u.2 ≈ v.2)
|
||||||
(p2 : v.1 ≈ w.1) (q2 : p2 ▹ v.2 ≈ w.2) :
|
(p2 : v.1 ≈ w.1) (q2 : p2 ▹ v.2 ≈ w.2) :
|
||||||
path_sigma (p1 ⬝ p2) (transport_pp B p1 p2 u.2 ⬝ ap (transport B p2) q1 ⬝ q2)
|
sigma.path (p1 ⬝ p2) (transport_pp B p1 p2 u.2 ⬝ ap (transport B p2) q1 ⬝ q2)
|
||||||
≈ path_sigma p1 q1 ⬝ path_sigma p2 q2 :=
|
≈ sigma.path p1 q1 ⬝ sigma.path p2 q2 :=
|
||||||
begin
|
begin
|
||||||
generalize q2, generalize p2, generalize q1, generalize p1,
|
reverts (p1, q1, p2, q2),
|
||||||
apply (destruct u), intros (u1, u2),
|
apply (destruct u), intros (u1, u2),
|
||||||
apply (destruct v), intros (v1, v2),
|
apply (destruct v), intros (v1, v2),
|
||||||
apply (destruct w), intros,
|
apply (destruct w), intros,
|
||||||
apply path_sigma_dpair_pp_pp
|
apply dpair_eq_dpair_pp_pp
|
||||||
end
|
end
|
||||||
|
|
||||||
definition path_sigma_dpair_p1_1p (p : a ≈ a') (q : p ▹ b ≈ b') :
|
definition dpair_eq_dpair_p1_1p (p : a ≈ a') (q : p ▹ b ≈ b') :
|
||||||
path_sigma_dpair p q ≈ path_sigma_dpair p idp ⬝ path_sigma_dpair idp q :=
|
dpair_eq_dpair p q ≈ dpair_eq_dpair p idp ⬝ dpair_eq_dpair idp q :=
|
||||||
begin
|
begin
|
||||||
generalize q, generalize b',
|
reverts (b', q),
|
||||||
apply (path.rec_on p), intros (b', q),
|
apply (path.rec_on p), intros (b', q),
|
||||||
apply (path.rec_on q), apply idp
|
apply (path.rec_on q), apply idp
|
||||||
end
|
end
|
||||||
|
|
||||||
/- pr1_path commutes with the groupoid structure. -/
|
/- path_pr1 commutes with the groupoid structure. -/
|
||||||
|
|
||||||
definition pr1_path_1 (u : Σa, B a) : (idpath u)..1 ≈ idpath (u.1) := idp
|
definition path_pr1_idp (u : Σa, B a) : (idpath u)..1 ≈ idpath (u.1) := idp
|
||||||
definition pr1_path_pp (p : u ≈ v) (q : v ≈ w) : (p ⬝ q) ..1 ≈ (p..1) ⬝ (q..1) := !ap_pp
|
definition path_pr1_pp (p : u ≈ v) (q : v ≈ w) : (p ⬝ q) ..1 ≈ (p..1) ⬝ (q..1) := !ap_pp
|
||||||
definition pr1_path_V (p : u ≈ v) : p⁻¹ ..1 ≈ (p..1)⁻¹ := !ap_V
|
definition path_pr1_V (p : u ≈ v) : p⁻¹ ..1 ≈ (p..1)⁻¹ := !ap_V
|
||||||
|
|
||||||
/- Applying dpair to one argument is the same as path_sigma_dpair with reflexivity in the first place. -/
|
/- Applying dpair to one argument is the same as dpair_eq_dpair with reflexivity in the first place. -/
|
||||||
|
|
||||||
definition ap_dpair (q : b₁ ≈ b₂) : ap (dpair a) q ≈ path_sigma_dpair idp q :=
|
definition ap_dpair (q : b₁ ≈ b₂) : ap (dpair a) q ≈ dpair_eq_dpair idp q :=
|
||||||
path.rec_on q idp
|
path.rec_on q idp
|
||||||
|
|
||||||
/- Dependent transport is the same as transport along a path_sigma. -/
|
/- Dependent transport is the same as transport along a sigma_path. -/
|
||||||
|
|
||||||
definition transportD_is_transport (p : a ≈ a') (c : C a b) :
|
definition transportD_eq_transport (p : a ≈ a') (c : C a b) :
|
||||||
p ▹D c ≈ transport (λu, C (u.1) (u.2)) (path_sigma_dpair p idp) c :=
|
p ▹D c ≈ transport (λu, C (u.1) (u.2)) (dpair_eq_dpair p idp) c :=
|
||||||
path.rec_on p idp
|
path.rec_on p idp
|
||||||
|
|
||||||
definition path_path_sigma_path_sigma {p1 q1 : a ≈ a'} {p2 : p1 ▹ b ≈ b'} {q2 : q1 ▹ b ≈ b'}
|
definition sigma_path_eq_sigma_path {p1 q1 : a ≈ a'} {p2 : p1 ▹ b ≈ b'} {q2 : q1 ▹ b ≈ b'}
|
||||||
(r : p1 ≈ q1) (s : r ▹ p2 ≈ q2) : path_sigma p1 p2 ≈ path_sigma q1 q2 :=
|
(r : p1 ≈ q1) (s : r ▹ p2 ≈ q2) : sigma.path p1 p2 ≈ sigma.path q1 q2 :=
|
||||||
path.rec_on r
|
path.rec_on r
|
||||||
proof (λq2 s, path.rec_on s idp) qed
|
proof (λq2 s, path.rec_on s idp) qed
|
||||||
q2
|
q2
|
||||||
s
|
s
|
||||||
-- begin
|
-- begin
|
||||||
-- generalize s, generalize q2,
|
-- reverts (q2, s),
|
||||||
-- apply (path.rec_on r), intros (q2, s),
|
-- apply (path.rec_on r), intros (q2, s),
|
||||||
-- apply (path.rec_on s), apply idp
|
-- apply (path.rec_on s), apply idp
|
||||||
-- end
|
-- end
|
||||||
|
|
||||||
|
|
||||||
/- A path between paths in a total space is commonly shown component wise. -/
|
/- A path between paths in a total space is commonly shown component wise. -/
|
||||||
definition path_path_sigma {p q : u ≈ v} (r : p..1 ≈ q..1) (s : r ▹ p..2 ≈ q..2) : p ≈ q :=
|
definition path_sigma_path {p q : u ≈ v} (r : p..1 ≈ q..1) (s : r ▹ p..2 ≈ q..2) : p ≈ q :=
|
||||||
begin
|
begin
|
||||||
generalize s, generalize r, generalize q,
|
reverts (q, r, s),
|
||||||
apply (path.rec_on p),
|
apply (path.rec_on p),
|
||||||
apply (destruct u), intros (u1, u2, q, r, s),
|
apply (destruct u), intros (u1, u2, q, r, s),
|
||||||
apply concat, rotate 1,
|
apply concat, rotate 1,
|
||||||
apply eta_path_sigma,
|
apply sigma_path_eta,
|
||||||
apply (path_path_sigma_path_sigma r s)
|
apply (sigma_path_eq_sigma_path r s)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
/- In Coq they often have to give u and v explicitly when using the following definition -/
|
/- In Coq they often have to give u and v explicitly when using the following definition -/
|
||||||
definition path_path_sigma_uncurried {p q : u ≈ v}
|
definition path_sigma_path_uncurried {p q : u ≈ v}
|
||||||
(rs : Σ(r : p..1 ≈ q..1), transport (λx, transport B x u.2 ≈ v.2) r p..2 ≈ q..2) : p ≈ q :=
|
(rs : Σ(r : p..1 ≈ q..1), transport (λx, transport B x u.2 ≈ v.2) r p..2 ≈ q..2) : p ≈ q :=
|
||||||
destruct rs path_path_sigma
|
destruct rs path_sigma_path
|
||||||
|
|
||||||
/- Transport -/
|
/- Transport -/
|
||||||
|
|
||||||
|
@ -201,8 +202,8 @@ namespace sigma
|
||||||
|
|
||||||
In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/
|
In particular, this indicates why `transport` alone cannot be fully defined by induction on the structure of types, although Id-elim/transportD can be (cf. Observational Type Theory). A more thorough set of lemmas, along the lines of the present ones but dealing with Id-elim rather than just transport, might be nice to have eventually? -/
|
||||||
|
|
||||||
definition transport_sigma (p : a ≈ a') (bc : Σ(b : B a), C a b) : p ▹ bc ≈ ⟨p ▹ bc.1, p ▹D bc.2⟩
|
definition transport_eq (p : a ≈ a') (bc : Σ(b : B a), C a b)
|
||||||
:=
|
: p ▹ bc ≈ ⟨p ▹ bc.1, p ▹D bc.2⟩ :=
|
||||||
begin
|
begin
|
||||||
apply (path.rec_on p),
|
apply (path.rec_on p),
|
||||||
apply (destruct bc), intros (b, c),
|
apply (destruct bc), intros (b, c),
|
||||||
|
@ -210,7 +211,7 @@ namespace sigma
|
||||||
end
|
end
|
||||||
|
|
||||||
/- The special case when the second variable doesn't depend on the first is simpler. -/
|
/- The special case when the second variable doesn't depend on the first is simpler. -/
|
||||||
definition transport_sigma' {B : Type} {C : A → B → Type} (p : a ≈ a') (bc : Σ(b : B), C a b)
|
definition transport_eq_deg {B : Type} {C : A → B → Type} (p : a ≈ a') (bc : Σ(b : B), C a b)
|
||||||
: p ▹ bc ≈ ⟨bc.1, p ▹ bc.2⟩ :=
|
: p ▹ bc ≈ ⟨bc.1, p ▹ bc.2⟩ :=
|
||||||
begin
|
begin
|
||||||
apply (path.rec_on p),
|
apply (path.rec_on p),
|
||||||
|
@ -218,12 +219,12 @@ namespace sigma
|
||||||
apply idp
|
apply idp
|
||||||
end
|
end
|
||||||
|
|
||||||
/- Or if the second variable contains a first component that doesn't depend on the first. Need to think about the naming of these. -/
|
/- Or if the second variable contains a first component that doesn't depend on the first. -/
|
||||||
|
|
||||||
definition transport_sigma_' {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a ≈ a')
|
definition transport_eq_4deg {C : A → Type} {D : Π a:A, B a → C a → Type} (p : a ≈ a')
|
||||||
(bcd : Σ(b : B a) (c : C a), D a b c) : p ▹ bcd ≈ ⟨p ▹ bcd.1, p ▹ bcd.2.1, p ▹D2 bcd.2.2⟩ :=
|
(bcd : Σ(b : B a) (c : C a), D a b c) : p ▹ bcd ≈ ⟨p ▹ bcd.1, p ▹ bcd.2.1, p ▹D2 bcd.2.2⟩ :=
|
||||||
begin
|
begin
|
||||||
generalize bcd,
|
revert bcd,
|
||||||
apply (path.rec_on p), intro bcd,
|
apply (path.rec_on p), intro bcd,
|
||||||
apply (destruct bcd), intros (b, cd),
|
apply (destruct bcd), intros (b, cd),
|
||||||
apply (destruct cd), intros (c, d),
|
apply (destruct cd), intros (c, d),
|
||||||
|
@ -233,58 +234,117 @@ namespace sigma
|
||||||
/- Functorial action -/
|
/- Functorial action -/
|
||||||
variables (f : A → A') (g : Πa, B a → B' (f a))
|
variables (f : A → A') (g : Πa, B a → B' (f a))
|
||||||
|
|
||||||
definition functor_sigma (u : Σa, B a) : Σa', B' a' :=
|
protected definition functor (u : Σa, B a) : Σa', B' a' :=
|
||||||
⟨f u.1, g u.1 u.2⟩
|
⟨f u.1, g u.1 u.2⟩
|
||||||
|
|
||||||
/- Equivalences -/
|
/- Equivalences -/
|
||||||
|
|
||||||
--remove explicit arguments of IsEquiv
|
--TODO: remove explicit arguments of is_equiv
|
||||||
definition isequiv_functor_sigma [H1 : is_equiv f] [H2 : Π a, @is_equiv (B a) (B' (f a)) (g a)]
|
definition is_equiv_functor [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
|
||||||
: is_equiv (functor_sigma f g) :=
|
: is_equiv (functor f g) :=
|
||||||
/-adjointify (functor_sigma f g)
|
adjointify (functor f g)
|
||||||
(functor_sigma (f⁻¹) (λ(x : A') (y : B' x), ((g (f⁻¹ x))⁻¹ ((retr f x)⁻¹ ▹ y))))
|
(functor (f⁻¹) (λ(a' : A') (b' : B' a'),
|
||||||
sorry-/
|
((g (f⁻¹ a'))⁻¹ (transport B' (retr f a'⁻¹) b'))))
|
||||||
sorry
|
begin
|
||||||
|
intro u',
|
||||||
|
apply (destruct u'), intros (a', b'),
|
||||||
|
apply (sigma.path (retr f a')),
|
||||||
|
-- "rewrite retr (g (f⁻¹ a'))"
|
||||||
|
apply concat, apply (ap (λx, (transport B' (retr f a') x))), apply (retr (g (f⁻¹ a'))),
|
||||||
|
show retr f a' ▹ (((retr f a') ⁻¹) ▹ b') ≈ b',
|
||||||
|
from transport_pV B' (retr f a') b'
|
||||||
|
end
|
||||||
|
begin
|
||||||
|
intro u,
|
||||||
|
apply (destruct u), intros (a, b),
|
||||||
|
apply (sigma.path (sect f a)),
|
||||||
|
show transport B (sect f a) (g (f⁻¹ (f a))⁻¹ (transport B' (retr f (f a)⁻¹) (g a b))) ≈ b,
|
||||||
|
from calc
|
||||||
|
transport B (sect f a) (g (f⁻¹ (f a))⁻¹ (transport B' (retr f (f a)⁻¹) (g a b)))
|
||||||
|
≈ g a⁻¹ (transport (B' ∘ f) (sect f a) (transport B' (retr f (f a)⁻¹) (g a b)))
|
||||||
|
: ap_transport (sect f a) (λ a, g a⁻¹)
|
||||||
|
... ≈ g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (retr f (f a)⁻¹) (g a b)))
|
||||||
|
: ap (g a⁻¹) !transport_compose
|
||||||
|
... ≈ g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (ap f (sect f a)⁻¹) (g a b)))
|
||||||
|
: ap (λ x, g a⁻¹ (transport B' (ap f (sect f a)) (transport B' (x⁻¹) (g a b)))) (adj f a)
|
||||||
|
... ≈ g a⁻¹ (g a b) : transport_pV
|
||||||
|
... ≈ b : sect (g a) b
|
||||||
|
end
|
||||||
|
-- -- "rewrite ap_transport"
|
||||||
|
-- apply concat, apply inverse, apply (ap_transport (sect f a) (λ a, g a⁻¹)),
|
||||||
|
-- apply concat, apply (ap (g a⁻¹)),
|
||||||
|
-- -- "rewrite transport_compose"
|
||||||
|
-- apply concat, apply transport_compose,
|
||||||
|
-- -- "rewrite adj"
|
||||||
|
-- -- "rewrite transport_pV"
|
||||||
|
-- apply sect,
|
||||||
|
|
||||||
definition equiv_functor_sigma [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)] : (Σa, B a) ≃ (Σa', B' a') :=
|
definition equiv_functor_of_is_equiv [H1 : is_equiv f] [H2 : Π a, is_equiv (g a)]
|
||||||
equiv.mk (functor_sigma f g) !isequiv_functor_sigma
|
: (Σa, B a) ≃ (Σa', B' a') :=
|
||||||
|
equiv.mk (functor f g) !is_equiv_functor
|
||||||
|
|
||||||
context --remove
|
context --remove
|
||||||
irreducible inv function.compose --remove
|
irreducible inv function.compose --remove
|
||||||
definition equiv_functor_sigma' (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) :
|
definition equiv_functor (Hf : A ≃ A') (Hg : Π a, B a ≃ B' (to_fun Hf a)) :
|
||||||
(Σa, B a) ≃ (Σa', B' a') :=
|
(Σa, B a) ≃ (Σa', B' a') :=
|
||||||
equiv_functor_sigma (to_fun Hf) (λ a, to_fun (Hg a))
|
equiv_functor_of_is_equiv (to_fun Hf) (λ a, to_fun (Hg a))
|
||||||
end --remove
|
end --remove
|
||||||
|
|
||||||
|
definition equiv_functor_id {B' : A → Type} (Hg : Π a, B a ≃ B' a) : (Σa, B a) ≃ Σa, B' a :=
|
||||||
|
equiv_functor equiv.refl Hg
|
||||||
|
|
||||||
|
definition ap_functor_sigma_dpair (p : a ≈ a') (q : p ▹ b ≈ b')
|
||||||
|
: ap (sigma.functor f g) (sigma.path p q)
|
||||||
|
≈ sigma.path (ap f p)
|
||||||
|
(transport_compose _ f p (g a b)⁻¹ ⬝ ap_transport p g b⁻¹ ⬝ ap (g a') q) :=
|
||||||
|
begin
|
||||||
|
reverts (b', q),
|
||||||
|
apply (path.rec_on p),
|
||||||
|
intros (b', q), apply (path.rec_on q),
|
||||||
|
apply idp
|
||||||
|
end
|
||||||
|
|
||||||
|
definition ap_functor_sigma (p : u.1 ≈ v.1) (q : p ▹ u.2 ≈ v.2)
|
||||||
|
: ap (sigma.functor f g) (sigma.path p q)
|
||||||
|
≈ sigma.path (ap f p)
|
||||||
|
(transport_compose B' f p (g u.1 u.2)⁻¹ ⬝ ap_transport p g u.2⁻¹ ⬝ ap (g v.1) q) :=
|
||||||
|
begin
|
||||||
|
reverts (p, q),
|
||||||
|
apply (destruct u), intros (a, b),
|
||||||
|
apply (destruct v), intros (a', b', p, q),
|
||||||
|
apply ap_functor_sigma_dpair
|
||||||
|
end
|
||||||
|
|
||||||
/- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/
|
/- definition 3.11.9(i): Summing up a contractible family of types does nothing. -/
|
||||||
open truncation
|
open truncation
|
||||||
definition isequiv_pr1_contr [instance] (B : A → Type) [H : Π a, is_contr (B a)]
|
definition is_equiv_dpr1 [instance] (B : A → Type) [H : Π a, is_contr (B a)]
|
||||||
: is_equiv (@dpr1 A B) :=
|
: is_equiv (@dpr1 A B) :=
|
||||||
adjointify dpr1
|
adjointify dpr1
|
||||||
(λa, ⟨a, !center⟩)
|
(λa, ⟨a, !center⟩)
|
||||||
(λa, idp)
|
(λa, idp)
|
||||||
(λu, path_sigma idp !contr)
|
(λu, sigma.path idp !contr)
|
||||||
|
|
||||||
definition equiv_sigma_contr [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A :=
|
definition equiv_of_all_contr [H : Π a, is_contr (B a)] : (Σa, B a) ≃ A :=
|
||||||
equiv.mk dpr1 _
|
equiv.mk dpr1 _
|
||||||
|
|
||||||
/- definition 3.11.9(ii): Dually, summing up over a contractible type does nothing. -/
|
/- definition 3.11.9(ii): Dually, summing up over a contractible type does nothing. -/
|
||||||
|
|
||||||
definition equiv_contr_sigma (B : A → Type) [H : is_contr A] : (Σa, B a) ≃ B (center A) :=
|
definition equiv_center_of_contr (B : A → Type) [H : is_contr A] : (Σa, B a) ≃ B (center A)
|
||||||
|
:=
|
||||||
equiv.mk _ (adjointify
|
equiv.mk _ (adjointify
|
||||||
(λu, contr u.1⁻¹ ▹ u.2)
|
(λu, contr u.1⁻¹ ▹ u.2)
|
||||||
(λb, ⟨!center, b⟩)
|
(λb, ⟨!center, b⟩)
|
||||||
(λb, ap (λx, x ▹ b) !path2_contr)
|
(λb, ap (λx, x ▹ b) !path2_contr)
|
||||||
(λu, path_sigma !contr !transport_pV))
|
(λu, sigma.path !contr !transport_pV))
|
||||||
|
|
||||||
/- Associativity -/
|
/- Associativity -/
|
||||||
|
|
||||||
--this proof is harder here than in Coq because we don't have eta definitionally for sigma
|
--this proof is harder than in Coq because we don't have eta definitionally for sigma
|
||||||
definition equiv_sigma_assoc (C : (Σa, B a) → Type) : (Σa b, C ⟨a,b⟩) ≃ (Σu, C u) :=
|
protected definition assoc_equiv (C : (Σa, B a) → Type) : (Σa b, C ⟨a, b⟩) ≃ (Σu, C u) :=
|
||||||
-- begin
|
-- begin
|
||||||
-- apply Equiv.mk,
|
-- apply equiv.mk,
|
||||||
-- apply (adjointify (λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
|
-- apply (adjointify (λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
|
||||||
-- (λuc, ⟨uc.1.1, uc.1.2, !eta_sigma⁻¹ ▹ uc.2⟩)),
|
-- (λuc, ⟨uc.1.1, uc.1.2, !peta⁻¹ ▹ uc.2⟩)),
|
||||||
-- intro uc, apply (destruct uc), intro u,
|
-- intro uc, apply (destruct uc), intro u,
|
||||||
-- apply (destruct u), intros (a, b, c),
|
-- apply (destruct u), intros (a, b, c),
|
||||||
-- apply idp,
|
-- apply idp,
|
||||||
|
@ -294,64 +354,121 @@ namespace sigma
|
||||||
-- end
|
-- end
|
||||||
equiv.mk _ (adjointify
|
equiv.mk _ (adjointify
|
||||||
(λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
|
(λav, ⟨⟨av.1, av.2.1⟩, av.2.2⟩)
|
||||||
(λuc, ⟨uc.1.1, uc.1.2, !eta_sigma⁻¹ ▹ uc.2⟩)
|
(λuc, ⟨uc.1.1, uc.1.2, !peta⁻¹ ▹ uc.2⟩)
|
||||||
proof (λuc, destruct uc (λu, destruct u (λa b c, idp))) qed
|
proof (λuc, destruct uc (λu, destruct u (λa b c, idp))) qed
|
||||||
proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed)
|
proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed)
|
||||||
|
|
||||||
open prod
|
open prod
|
||||||
definition equiv_sigma_prod (C : (A × A') → Type) : (Σa a', C (a,a')) ≃ (Σu, C u) :=
|
definition assoc_equiv_prod (C : (A × A') → Type) : (Σa a', C (a,a')) ≃ (Σu, C u) :=
|
||||||
equiv.mk _ (adjointify
|
equiv.mk _ (adjointify
|
||||||
(λav, ⟨(av.1, av.2.1), av.2.2⟩)
|
(λav, ⟨(av.1, av.2.1), av.2.2⟩)
|
||||||
(λuc, ⟨pr₁ (uc.1), pr₂ (uc.1), !eta_prod⁻¹ ▹ uc.2⟩)
|
(λuc, ⟨pr₁ (uc.1), pr₂ (uc.1), !prod.peta⁻¹ ▹ uc.2⟩)
|
||||||
proof (λuc, destruct uc (λu, prod.destruct u (λa b c, idp))) qed
|
proof (λuc, destruct uc (λu, prod.destruct u (λa b c, idp))) qed
|
||||||
proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed)
|
proof (λav, destruct av (λa v, destruct v (λb c, idp))) qed)
|
||||||
|
|
||||||
|
|
||||||
/- Symmetry -/
|
/- Symmetry -/
|
||||||
-- if this breaks, replace "Equiv.id" by "proof Equiv.id qed"
|
definition symm_equiv_uncurried (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) :=
|
||||||
definition equiv_sigma_symm_prod (C : A × A' → Type) : (Σa a', C (a, a')) ≃ (Σa' a, C (a, a')) :=
|
|
||||||
calc
|
calc
|
||||||
(Σa a', C (a, a')) ≃ Σu, C u : equiv_sigma_prod
|
(Σa a', C (a, a')) ≃ Σu, C u : assoc_equiv_prod
|
||||||
... ≃ Σv, C (flip v) : equiv_functor_sigma' !equiv_prod_symm
|
... ≃ Σv, C (flip v) : equiv_functor !prod.symm_equiv
|
||||||
(λu, prod.destruct u (λa a', equiv.refl))
|
(λu, prod.destruct u (λa a', equiv.refl))
|
||||||
... ≃ (Σa' a, C (a, a')) : equiv_sigma_prod
|
... ≃ (Σa' a, C (a, a')) : assoc_equiv_prod
|
||||||
|
|
||||||
definition equiv_sigma_symm (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') :=
|
definition symm_equiv (C : A → A' → Type) : (Σa a', C a a') ≃ (Σa' a, C a a') :=
|
||||||
sigma.equiv_sigma_symm_prod (λu, C (pr1 u) (pr2 u))
|
symm_equiv_uncurried (λu, C (pr1 u) (pr2 u))
|
||||||
|
|
||||||
definition equiv_sigma0_prod (A B : Type) : (Σ(a : A), B) ≃ A × B :=
|
definition equiv_prod (A B : Type) : (Σ(a : A), B) ≃ A × B :=
|
||||||
equiv.mk _ (adjointify
|
equiv.mk _ (adjointify
|
||||||
(λs, (s.1, s.2))
|
(λs, (s.1, s.2))
|
||||||
(λp, ⟨pr₁ p, pr₂ p⟩)
|
(λp, ⟨pr₁ p, pr₂ p⟩)
|
||||||
proof (λp, prod.destruct p (λa b, idp)) qed
|
proof (λp, prod.destruct p (λa b, idp)) qed
|
||||||
proof (λs, destruct s (λa b, idp)) qed)
|
proof (λs, destruct s (λa b, idp)) qed)
|
||||||
|
|
||||||
definition equiv_sigma_symm0 (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A :=
|
definition symm_equiv_deg (A B : Type) : (Σ(a : A), B) ≃ Σ(b : B), A :=
|
||||||
calc
|
calc
|
||||||
(Σ(a : A), B) ≃ A × B : equiv_sigma0_prod
|
(Σ(a : A), B) ≃ A × B : equiv_prod
|
||||||
... ≃ B × A : equiv_prod_symm
|
... ≃ B × A : prod.symm_equiv
|
||||||
... ≃ Σ(b : B), A : equiv_sigma0_prod
|
... ≃ Σ(b : B), A : equiv_prod
|
||||||
|
|
||||||
|
/- ** Universal mapping properties -/
|
||||||
|
/- *** The positive universal property. -/
|
||||||
|
|
||||||
|
section
|
||||||
|
open funext
|
||||||
|
--in Coq this can be done without function extensionality
|
||||||
|
definition is_equiv_sigma_rec [instance] [FUN : funext] (C : (Σa, B a) → Type)
|
||||||
|
: is_equiv (@sigma.rec _ _ C) :=
|
||||||
|
adjointify _ (λ g a b, g ⟨a, b⟩)
|
||||||
|
(λ g, proof path_pi (λu, destruct u (λa b, idp)) qed)
|
||||||
|
(λ f, idpath f)
|
||||||
|
|
||||||
|
definition equiv_sigma_rec [FUN : funext] (C : (Σa, B a) → Type)
|
||||||
|
: (Π(a : A) (b: B a), C ⟨a, b⟩) ≃ (Πxy, C xy) :=
|
||||||
|
equiv.mk sigma.rec _
|
||||||
|
|
||||||
|
/- *** The negative universal property. -/
|
||||||
|
|
||||||
|
definition coind_uncurried (fg : Σ(f : Πa, B a), Πa, C a (f a)) (a : A) : Σ(b : B a), C a b
|
||||||
|
:= ⟨fg.1 a, fg.2 a⟩
|
||||||
|
|
||||||
|
definition coind (f : Π a, B a) (g : Π a, C a (f a)) (a : A) : Σ(b : B a), C a b :=
|
||||||
|
coind_uncurried ⟨f, g⟩ a
|
||||||
|
|
||||||
|
--is the instance below dangerous?
|
||||||
|
--in Coq this can be done without function extensionality
|
||||||
|
definition is_equiv_coind [instance] [FUN : funext] (C : Πa, B a → Type)
|
||||||
|
: is_equiv (@coind_uncurried _ _ C) :=
|
||||||
|
adjointify _ (λ h, ⟨λa, (h a).1, λa, (h a).2⟩)
|
||||||
|
(λ h, proof path_pi (λu, !peta) qed)
|
||||||
|
(λfg, destruct fg (λ(f : Π (a : A), B a) (g : Π (x : A), C x (f x)), proof idp qed))
|
||||||
|
|
||||||
|
definition equiv_coind [FUN : funext] : (Σ(f : Πa, B a), Πa, C a (f a)) ≃ (Πa, Σb, C a b) :=
|
||||||
|
equiv.mk coind_uncurried _
|
||||||
|
end
|
||||||
|
|
||||||
|
/- ** Subtypes (sigma types whose second components are hprops) -/
|
||||||
|
|
||||||
|
/- To prove equality in a subtype, we only need equality of the first component. -/
|
||||||
|
definition path_hprop [H : Πa, is_hprop (B a)] (u v : Σa, B a) : u.1 ≈ v.1 → u ≈ v :=
|
||||||
|
(sigma_path_uncurried ∘ (@inv _ _ dpr1 (@is_equiv_dpr1 _ _ (λp, !succ_is_trunc))))
|
||||||
|
|
||||||
|
definition is_equiv_path_hprop [instance] [H : Πa, is_hprop (B a)] (u v : Σa, B a)
|
||||||
|
: is_equiv (path_hprop u v) :=
|
||||||
|
!is_equiv.compose
|
||||||
|
|
||||||
|
definition equiv_path_hprop [H : Πa, is_hprop (B a)] (u v : Σa, B a) : (u.1 ≈ v.1) ≃ (u ≈ v)
|
||||||
|
:=
|
||||||
|
equiv.mk !path_hprop _
|
||||||
|
|
||||||
/- truncatedness -/
|
/- truncatedness -/
|
||||||
definition trunc_sigma [instance] (B : A → Type) (n : trunc_index)
|
definition trunc_sigma [instance] (B : A → Type) (n : trunc_index)
|
||||||
[HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) :=
|
[HA : is_trunc n A] [HB : Πa, is_trunc n (B a)] : is_trunc n (Σa, B a) :=
|
||||||
begin
|
begin
|
||||||
reverts (A, B, HA, HB),
|
reverts (A, B, HA, HB),
|
||||||
apply (truncation.trunc_index.rec_on n),
|
apply (trunc_index.rec_on n),
|
||||||
intros (A, B, HA, HB),
|
intros (A, B, HA, HB),
|
||||||
fapply trunc_equiv',
|
fapply trunc_equiv',
|
||||||
apply equiv.symm,
|
apply equiv.symm,
|
||||||
apply equiv_contr_sigma, apply HA, --should be solved by term synthesis
|
apply equiv_center_of_contr, apply HA, --should be solved by term synthesis
|
||||||
apply HB,
|
apply HB,
|
||||||
intros (n, IH, A, B, HA, HB),
|
intros (n, IH, A, B, HA, HB),
|
||||||
fapply is_trunc_succ, intros (u, v),
|
fapply is_trunc_succ, intros (u, v),
|
||||||
fapply trunc_equiv',
|
fapply trunc_equiv',
|
||||||
apply equiv_path_sigma,
|
apply equiv_sigma_path,
|
||||||
apply IH,
|
apply IH,
|
||||||
apply (succ_is_trunc n),
|
apply succ_is_trunc, assumption,
|
||||||
intro p,
|
intro p,
|
||||||
show is_trunc n (p ▹ u .2 ≈ v .2), from
|
show is_trunc n (p ▹ u .2 ≈ v .2), from
|
||||||
succ_is_trunc n (p ▹ u.2) (v.2),
|
succ_is_trunc n (p ▹ u.2) (v.2),
|
||||||
end
|
end
|
||||||
|
|
||||||
end sigma
|
end sigma
|
||||||
|
|
||||||
|
open truncation sigma
|
||||||
|
|
||||||
|
namespace prod
|
||||||
|
/- truncatedness -/
|
||||||
|
definition trunc_prod [instance] (A B : Type) (n : trunc_index)
|
||||||
|
[HA : is_trunc n A] [HB : is_trunc n B] : is_trunc n (A × B) :=
|
||||||
|
trunc_equiv' n !equiv_prod
|
||||||
|
end prod
|
||||||
|
|
Loading…
Reference in a new issue