feat(library/data/list): test type notation in the standard library

This commit is contained in:
Leonardo de Moura 2015-07-20 22:00:05 -07:00
parent b9451549d1
commit ff425b66e7
3 changed files with 25 additions and 25 deletions

View file

@ -573,8 +573,8 @@ list.induction_on l
theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) := theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
take q, qeq.induction_on q take q, qeq.induction_on q
(λ t, (λ t,
have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl, have t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
exists.intro [] (exists.intro t aux)) exists.intro [] (exists.intro t this))
(λ b t t' q r, (λ b t t' q r,
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r, obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
have b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂), have b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),

View file

@ -48,8 +48,8 @@ theorem length_map (f : A → B) : ∀ l : list A, length (map f l) = length l
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
| a [] i := absurd i !not_mem_nil | a [] i := absurd i !not_mem_nil
| a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i) | a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i)
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons) (suppose a = x, by rewrite [this, map_cons]; apply mem_cons)
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs)) (suppose a ∈ xs, or.inr (mem_map this))
theorem exists_of_mem_map {A B : Type} {f : A → B} {b : B} : theorem exists_of_mem_map {A B : Type} {f : A → B} {b : B} :
∀{l}, b ∈ map f l → ∃a, a ∈ l ∧ f a = b ∀{l}, b ∈ map f l → ∃a, a ∈ l ∧ f a = b
@ -90,8 +90,8 @@ theorem of_mem_filter {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l},
| [] ain := absurd ain !not_mem_nil | [] ain := absurd ain !not_mem_nil
| (b::l) ain := by_cases | (b::l) ain := by_cases
(assume pb : p b, (assume pb : p b,
have aux : a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain, have a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain,
or.elim (eq_or_mem_of_mem_cons aux) or.elim (eq_or_mem_of_mem_cons this)
(suppose a = b, by rewrite [-this at pb]; exact pb) (suppose a = b, by rewrite [-this at pb]; exact pb)
(suppose a ∈ filter p l, of_mem_filter this)) (suppose a ∈ filter p l, of_mem_filter this))
(suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (of_mem_filter ain)) (suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (of_mem_filter ain))
@ -207,19 +207,19 @@ assume pa alllp, and.intro pa alllp
theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q
| [] h₁ h₂ := trivial | [] h₁ h₂ := trivial
| (a::l) h₁ h₂ := | (a::l) h₁ h₂ :=
have allq : all l q, from all_implies (all_of_all_cons h₁) h₂, have all l q, from all_implies (all_of_all_cons h₁) h₂,
have q a, from h₂ a (of_all_cons h₁), have q a, from h₂ a (of_all_cons h₁),
all_cons_of_all this allq all_cons_of_all this `all l q`
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a
| [] h₁ h₂ := absurd h₁ !not_mem_nil | [] h₁ h₂ := absurd h₁ !not_mem_nil
| (b::l) h₁ h₂ := | (b::l) h₁ h₂ :=
or.elim (eq_or_mem_of_mem_cons h₁) or.elim (eq_or_mem_of_mem_cons h₁)
(λ aeqb : a = b, (suppose a = b,
by rewrite [all_cons_eq at h₂, -aeqb at h₂]; exact (and.elim_left h₂)) by rewrite [all_cons_eq at h₂, -this at h₂]; exact (and.elim_left h₂))
(λ ainl : a ∈ l, (suppose a ∈ l,
have all l p, by rewrite [all_cons_eq at h₂]; exact (and.elim_right h₂), have all l p, by rewrite [all_cons_eq at h₂]; exact (and.elim_right h₂),
of_mem_of_all ainl this) of_mem_of_all `a ∈ l` this)
theorem all_of_forall {p : A → Prop} : ∀ {l}, (∀a, a ∈ l → p a) → all l p theorem all_of_forall {p : A → Prop} : ∀ {l}, (∀a, a ∈ l → p a) → all l p
| [] H := !all_nil | [] H := !all_nil
@ -234,10 +234,10 @@ theorem any_of_mem {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → p a → any l
| [] i h := absurd i !not_mem_nil | [] i h := absurd i !not_mem_nil
| (b::l) i h := | (b::l) i h :=
or.elim (eq_or_mem_of_mem_cons i) or.elim (eq_or_mem_of_mem_cons i)
(λ aeqb : a = b, by rewrite [-aeqb]; exact (or.inl h)) (suppose a = b, by rewrite [-this]; exact (or.inl h))
(λ ainl : a ∈ l, (suppose a ∈ l,
have anyl : any l p, from any_of_mem ainl h, have any l p, from any_of_mem this h,
or.inr anyl) or.inr this)
theorem exists_of_any {p : A → Prop} : ∀{l : list A}, any l p → ∃a, a ∈ l ∧ p a theorem exists_of_any {p : A → Prop} : ∀{l : list A}, any l p → ∃a, a ∈ l ∧ p a
| [] H := false.elim H | [] H := false.elim H
@ -322,9 +322,9 @@ theorem product_nil : ∀ (l : list A), product l (@nil B) = []
theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a := theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a :=
assume ain, assume ain,
assert h₁ : pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain, assert pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain,
assert h₂ : a₁ ∈ map (λb, a) l, by rewrite [map_map at h₁, ↑pr1 at h₁]; exact h₁, assert a₁ ∈ map (λb, a) l, by revert this; rewrite [map_map, ↑pr1]; intro this; assumption,
eq_of_map_const h₂ eq_of_map_const this
theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l := theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l :=
assume ain, assume ain,

View file

@ -551,15 +551,15 @@ assume p, perm_induction_on p
exact skip y r exact skip y r
end) end)
(λ xney : x ≠ y, (λ xney : x ≠ y,
have xint₁ : x ∈ t₁, from or_resolve_right xinyt₁ xney, have x ∈ t₁, from or_resolve_right xinyt₁ xney,
assert xint₂ : x ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup xint₁)), assert x ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup this)),
assert nyinxt₂ : y ∉ x::t₂, from assert y ∉ x::t₂, from
assume yinxt₂ : y ∈ x::t₂, or.elim (eq_or_mem_of_mem_cons yinxt₂) suppose y ∈ x::t₂, or.elim (eq_or_mem_of_mem_cons this)
(λ h, absurd h (ne.symm xney)) (λ h, absurd h (ne.symm xney))
(λ h, absurd h nyint₂), (λ h, absurd h nyint₂),
begin begin
rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_not_mem nyinxt₂, rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_not_mem `y ∉ x::t₂`,
erase_dup_cons_of_not_mem nyint₁, erase_dup_cons_of_mem xint₂], erase_dup_cons_of_not_mem nyint₁, erase_dup_cons_of_mem `x ∈ t₂`],
exact skip y r exact skip y r
end))) end)))
(λ nxinyt₁ : x ∉ y::t₁, (λ nxinyt₁ : x ∉ y::t₁,