feat(library/data/list): test type
notation in the standard library
This commit is contained in:
parent
b9451549d1
commit
ff425b66e7
3 changed files with 25 additions and 25 deletions
|
@ -573,8 +573,8 @@ list.induction_on l
|
||||||
theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
|
theorem qeq_split {a : A} {l l' : list A} : l'≈a|l → ∃l₁ l₂, l = l₁++l₂ ∧ l' = l₁++(a::l₂) :=
|
||||||
take q, qeq.induction_on q
|
take q, qeq.induction_on q
|
||||||
(λ t,
|
(λ t,
|
||||||
have aux : t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
|
have t = []++t ∧ a::t = []++(a::t), from and.intro rfl rfl,
|
||||||
exists.intro [] (exists.intro t aux))
|
exists.intro [] (exists.intro t this))
|
||||||
(λ b t t' q r,
|
(λ b t t' q r,
|
||||||
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
|
obtain (l₁ l₂ : list A) (h : t = l₁++l₂ ∧ t' = l₁++(a::l₂)), from r,
|
||||||
have b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
|
have b::t = (b::l₁)++l₂ ∧ b::t' = (b::l₁)++(a::l₂),
|
||||||
|
|
|
@ -48,8 +48,8 @@ theorem length_map (f : A → B) : ∀ l : list A, length (map f l) = length l
|
||||||
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
|
theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l
|
||||||
| a [] i := absurd i !not_mem_nil
|
| a [] i := absurd i !not_mem_nil
|
||||||
| a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i)
|
| a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i)
|
||||||
(λ aeqx : a = x, by rewrite [aeqx, map_cons]; apply mem_cons)
|
(suppose a = x, by rewrite [this, map_cons]; apply mem_cons)
|
||||||
(λ ainxs : a ∈ xs, or.inr (mem_map ainxs))
|
(suppose a ∈ xs, or.inr (mem_map this))
|
||||||
|
|
||||||
theorem exists_of_mem_map {A B : Type} {f : A → B} {b : B} :
|
theorem exists_of_mem_map {A B : Type} {f : A → B} {b : B} :
|
||||||
∀{l}, b ∈ map f l → ∃a, a ∈ l ∧ f a = b
|
∀{l}, b ∈ map f l → ∃a, a ∈ l ∧ f a = b
|
||||||
|
@ -90,8 +90,8 @@ theorem of_mem_filter {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l},
|
||||||
| [] ain := absurd ain !not_mem_nil
|
| [] ain := absurd ain !not_mem_nil
|
||||||
| (b::l) ain := by_cases
|
| (b::l) ain := by_cases
|
||||||
(assume pb : p b,
|
(assume pb : p b,
|
||||||
have aux : a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain,
|
have a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain,
|
||||||
or.elim (eq_or_mem_of_mem_cons aux)
|
or.elim (eq_or_mem_of_mem_cons this)
|
||||||
(suppose a = b, by rewrite [-this at pb]; exact pb)
|
(suppose a = b, by rewrite [-this at pb]; exact pb)
|
||||||
(suppose a ∈ filter p l, of_mem_filter this))
|
(suppose a ∈ filter p l, of_mem_filter this))
|
||||||
(suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (of_mem_filter ain))
|
(suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (of_mem_filter ain))
|
||||||
|
@ -207,19 +207,19 @@ assume pa alllp, and.intro pa alllp
|
||||||
theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q
|
theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q
|
||||||
| [] h₁ h₂ := trivial
|
| [] h₁ h₂ := trivial
|
||||||
| (a::l) h₁ h₂ :=
|
| (a::l) h₁ h₂ :=
|
||||||
have allq : all l q, from all_implies (all_of_all_cons h₁) h₂,
|
have all l q, from all_implies (all_of_all_cons h₁) h₂,
|
||||||
have q a, from h₂ a (of_all_cons h₁),
|
have q a, from h₂ a (of_all_cons h₁),
|
||||||
all_cons_of_all this allq
|
all_cons_of_all this `all l q`
|
||||||
|
|
||||||
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a
|
theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a
|
||||||
| [] h₁ h₂ := absurd h₁ !not_mem_nil
|
| [] h₁ h₂ := absurd h₁ !not_mem_nil
|
||||||
| (b::l) h₁ h₂ :=
|
| (b::l) h₁ h₂ :=
|
||||||
or.elim (eq_or_mem_of_mem_cons h₁)
|
or.elim (eq_or_mem_of_mem_cons h₁)
|
||||||
(λ aeqb : a = b,
|
(suppose a = b,
|
||||||
by rewrite [all_cons_eq at h₂, -aeqb at h₂]; exact (and.elim_left h₂))
|
by rewrite [all_cons_eq at h₂, -this at h₂]; exact (and.elim_left h₂))
|
||||||
(λ ainl : a ∈ l,
|
(suppose a ∈ l,
|
||||||
have all l p, by rewrite [all_cons_eq at h₂]; exact (and.elim_right h₂),
|
have all l p, by rewrite [all_cons_eq at h₂]; exact (and.elim_right h₂),
|
||||||
of_mem_of_all ainl this)
|
of_mem_of_all `a ∈ l` this)
|
||||||
|
|
||||||
theorem all_of_forall {p : A → Prop} : ∀ {l}, (∀a, a ∈ l → p a) → all l p
|
theorem all_of_forall {p : A → Prop} : ∀ {l}, (∀a, a ∈ l → p a) → all l p
|
||||||
| [] H := !all_nil
|
| [] H := !all_nil
|
||||||
|
@ -234,10 +234,10 @@ theorem any_of_mem {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → p a → any l
|
||||||
| [] i h := absurd i !not_mem_nil
|
| [] i h := absurd i !not_mem_nil
|
||||||
| (b::l) i h :=
|
| (b::l) i h :=
|
||||||
or.elim (eq_or_mem_of_mem_cons i)
|
or.elim (eq_or_mem_of_mem_cons i)
|
||||||
(λ aeqb : a = b, by rewrite [-aeqb]; exact (or.inl h))
|
(suppose a = b, by rewrite [-this]; exact (or.inl h))
|
||||||
(λ ainl : a ∈ l,
|
(suppose a ∈ l,
|
||||||
have anyl : any l p, from any_of_mem ainl h,
|
have any l p, from any_of_mem this h,
|
||||||
or.inr anyl)
|
or.inr this)
|
||||||
|
|
||||||
theorem exists_of_any {p : A → Prop} : ∀{l : list A}, any l p → ∃a, a ∈ l ∧ p a
|
theorem exists_of_any {p : A → Prop} : ∀{l : list A}, any l p → ∃a, a ∈ l ∧ p a
|
||||||
| [] H := false.elim H
|
| [] H := false.elim H
|
||||||
|
@ -322,9 +322,9 @@ theorem product_nil : ∀ (l : list A), product l (@nil B) = []
|
||||||
|
|
||||||
theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a :=
|
theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a :=
|
||||||
assume ain,
|
assume ain,
|
||||||
assert h₁ : pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain,
|
assert pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain,
|
||||||
assert h₂ : a₁ ∈ map (λb, a) l, by rewrite [map_map at h₁, ↑pr1 at h₁]; exact h₁,
|
assert a₁ ∈ map (λb, a) l, by revert this; rewrite [map_map, ↑pr1]; intro this; assumption,
|
||||||
eq_of_map_const h₂
|
eq_of_map_const this
|
||||||
|
|
||||||
theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l :=
|
theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l :=
|
||||||
assume ain,
|
assume ain,
|
||||||
|
|
|
@ -551,15 +551,15 @@ assume p, perm_induction_on p
|
||||||
exact skip y r
|
exact skip y r
|
||||||
end)
|
end)
|
||||||
(λ xney : x ≠ y,
|
(λ xney : x ≠ y,
|
||||||
have xint₁ : x ∈ t₁, from or_resolve_right xinyt₁ xney,
|
have x ∈ t₁, from or_resolve_right xinyt₁ xney,
|
||||||
assert xint₂ : x ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup xint₁)),
|
assert x ∈ t₂, from mem_of_mem_erase_dup (mem_perm r (mem_erase_dup this)),
|
||||||
assert nyinxt₂ : y ∉ x::t₂, from
|
assert y ∉ x::t₂, from
|
||||||
assume yinxt₂ : y ∈ x::t₂, or.elim (eq_or_mem_of_mem_cons yinxt₂)
|
suppose y ∈ x::t₂, or.elim (eq_or_mem_of_mem_cons this)
|
||||||
(λ h, absurd h (ne.symm xney))
|
(λ h, absurd h (ne.symm xney))
|
||||||
(λ h, absurd h nyint₂),
|
(λ h, absurd h nyint₂),
|
||||||
begin
|
begin
|
||||||
rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_not_mem nyinxt₂,
|
rewrite [erase_dup_cons_of_mem xinyt₁, erase_dup_cons_of_not_mem `y ∉ x::t₂`,
|
||||||
erase_dup_cons_of_not_mem nyint₁, erase_dup_cons_of_mem xint₂],
|
erase_dup_cons_of_not_mem nyint₁, erase_dup_cons_of_mem `x ∈ t₂`],
|
||||||
exact skip y r
|
exact skip y r
|
||||||
end)))
|
end)))
|
||||||
(λ nxinyt₁ : x ∉ y::t₁,
|
(λ nxinyt₁ : x ∉ y::t₁,
|
||||||
|
|
Loading…
Reference in a new issue