feat(hit.suspension): add definition of spheres and the circle
This commit is contained in:
parent
2469b8a2f8
commit
ffe158f785
2 changed files with 60 additions and 4 deletions
|
@ -5,7 +5,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
|
|||
Module: hit.suspension
|
||||
Authors: Floris van Doorn
|
||||
|
||||
Declaration of suspension
|
||||
Declaration of suspension and spheres
|
||||
-/
|
||||
|
||||
import .pushout
|
||||
|
@ -26,9 +26,9 @@ namespace suspension
|
|||
glue _ _ a
|
||||
|
||||
protected definition rec {A : Type} {P : suspension A → Type} (PN : P !north) (PS : P !south)
|
||||
(Pmerid : Π(a : A), merid a ▹ PN = PS) (y : suspension A) : P y :=
|
||||
(Pmerid : Π(a : A), merid a ▹ PN = PS) (x : suspension A) : P x :=
|
||||
begin
|
||||
fapply (pushout.rec_on _ _ y),
|
||||
fapply (pushout.rec_on _ _ x),
|
||||
{ intro u, cases u, exact PN},
|
||||
{ intro u, cases u, exact PS},
|
||||
{ exact Pmerid},
|
||||
|
@ -39,3 +39,59 @@ namespace suspension
|
|||
rec PN PS Pmerid y
|
||||
|
||||
end suspension
|
||||
|
||||
open nat suspension bool
|
||||
|
||||
definition sphere (n : ℕ) := nat.rec_on n bool (λk Sk, suspension Sk)
|
||||
definition circle [reducible] := sphere 1
|
||||
|
||||
namespace circle
|
||||
|
||||
definition base : circle := !north
|
||||
definition loop : base = base := merid tt ⬝ (merid ff)⁻¹
|
||||
|
||||
protected definition rec2 {P : circle → Type} (PN : P !north) (PS : P !south)
|
||||
(Pff : merid ff ▹ PN = PS) (Ptt : merid tt ▹ PN = PS) (x : circle) : P x :=
|
||||
begin
|
||||
fapply (suspension.rec_on x),
|
||||
{ exact PN},
|
||||
{ exact PS},
|
||||
{ intro b, cases b, exact Pff, exact Ptt},
|
||||
end
|
||||
|
||||
protected definition rec2_on {P : circle → Type} (x : circle) (PN : P !north) (PS : P !south)
|
||||
(Pff : merid ff ▹ PN = PS) (Ptt : merid tt ▹ PN = PS) : P x :=
|
||||
circle.rec2 PN PS Pff Ptt x
|
||||
|
||||
protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase)
|
||||
(x : circle) : P x :=
|
||||
begin
|
||||
fapply (rec2_on x),
|
||||
{ exact Pbase},
|
||||
{ sexact (merid ff ▹ Pbase)},
|
||||
{ apply idp},
|
||||
{ apply eq_tr_of_inv_tr_eq, rewrite -tr_con, apply Ploop},
|
||||
end
|
||||
|
||||
protected definition rec_on {P : circle → Type} (x : circle) (Pbase : P base)
|
||||
(Ploop : loop ▹ Pbase = Pbase) : P x :=
|
||||
circle.rec Pbase Ploop x
|
||||
|
||||
protected definition rec_constant {P : Type} (Pbase : P) (Ploop : Pbase = Pbase)
|
||||
(x : circle) : P :=
|
||||
circle.rec Pbase (tr_constant loop Pbase ⬝ Ploop) x
|
||||
|
||||
definition comp_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) :
|
||||
ap (circle.rec Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry :=
|
||||
sorry
|
||||
|
||||
definition comp_constant_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) :
|
||||
ap (circle.rec_constant Pbase Ploop) loop = sorry ⬝ Ploop ⬝ sorry :=
|
||||
sorry
|
||||
|
||||
|
||||
protected definition rec_on_constant {P : Type} (x : circle) (Pbase : P) (Ploop : Pbase = Pbase)
|
||||
: P :=
|
||||
rec_constant Pbase Ploop x
|
||||
|
||||
end circle
|
||||
|
|
Loading…
Reference in a new issue