The new hash code has the property that given expr_cell * c1 and expr_cell * c2,
if c1 != c2 then there is a high propbability that c1->hash_alloc() != c2->hash_alloc().
The structural hash code hash() does not have this property because we may have
c1 != c2, but c1 and c2 are structurally equal.
The new hash code is only compatible with pointer equality.
By compatible we mean, if c1 == c2, then c1->hash_alloc() == c2->hash_alloc().
This property is obvious because hash_alloc() does not have side-effects.
The test tests/lua/big.lua exposes the problem fixed by this commit.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Instead of having m_interrupted flags in several components. We use a thread_local global variable.
The new approach is much simpler to get right since there is no risk of "forgetting" to propagate
the set_interrupt method to sub-components.
The plan is to support set_interrupt methods and m_interrupted flags only in tactic objects.
We need to support them in tactics and tacticals because we want to implement combinators/tacticals such as (try_for T M) that fails if tactic T does not finish in M ms.
For example, consider the tactic:
try-for (T1 ORELSE T2) 5
It tries the tactic (T1 ORELSE T2) for 5ms.
Thus, if T1 does not finish after 5ms an interrupt request is sent, and T1 is interrupted.
Now, if you do not have a m_interrupted flag marking each tactic, the ORELSE combinator will try T2.
The set_interrupt method for ORELSE tactical should turn on the m_interrupted flag.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
We need weak references to environment objects because the environment has a reference to the type_checker and the type_checker has a reference back to the environment. Before, we were breaking the cycle using an "environment const &". This was a dangerous hack because the environment smart pointer passed to the type_checker could be on the stack. The weak_ref is much safer.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The problem is that unique names depend on the order compilation units are initialized. The order of initialization is not specified by the C++ standard. Then, different compilers (or even the same compiler) may produce different initialization orders, and consequently the metavariable prefix is going to be different for different builds. This is not a bug, but it makes unit tests to fail since the output produced by different builds is different for the same input file.
Avoiding unique name feature in the default metavariable prefix avoids this problem.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
For example, this feature is useful when displaying the integer value 10 with coercions enabled. In this case, we want to display "nat_to_int 10" instead of "10".
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
It was not a good idea to use heterogeneous equality as the default equality in Lean.
It creates the following problems.
- Heterogeneous equality does not propagate constraints in the elaborator.
For example, suppose that l has type (List Int), then the expression
l = nil
will not propagate the type (List Int) to nil.
- It is easy to write false. For example, suppose x has type Real, and the user
writes x = 0. This is equivalent to false, since 0 has type Nat. The elaborator cannot introduce
the coercion since x = 0 is a type correct expression.
Homogeneous equality does not suffer from the problems above.
We keep heterogeneous equality because it is useful for generating proof terms.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
It is incorrect to apply substitutions during normalization.
The problem is that we do not have support for tracking justifications in the normalizer. So, substitutions were being silently applied during normalization. Thus, the correctness of the conflict resolution in the elaboration was being affected.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
We need that when we normalize the assignment in a metavariable environment.
That is, we replace metavariable in a substitution with other assignments.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
We may miss solutions, but the solutions found are much more readable.
For example, without this option, for elaboration problem
Theorem Example4 (a b c d e : N) (H: (a = b ∧ b = e ∧ b = c) ∨ (a = d ∧ d = c)) : (h a c) = (h c a) :=
DisjCases H
(fun H1 : _,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))
in CongrH AeqC (Symm AeqC))
(fun H1 : _,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1)
in CongrH AeqC (Symm AeqC))
the elaborator generates
Theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a c) = (h c a) :=
DisjCases
H
(λ H1 : if
Bool
(if Bool (a = b) (if Bool (if Bool (if Bool (b = e) (if Bool (b = c) ⊥ ⊤) ⊤) ⊥ ⊤) ⊥ ⊤) ⊤)
⊥
⊤,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1)) in CongrH AeqC (Symm AeqC))
(λ H1 : if Bool (if Bool (a = d) (if Bool (d = c) ⊥ ⊤) ⊤) ⊥ ⊤,
let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1) in CongrH AeqC (Symm AeqC))
The solution is correct, but it is not very readable. The problem is that the elaborator expands the definitions of \/ and /\.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>