The following call sequence is possible:
C++ -> Lua -> C++ -> Lua -> C++
The first block of C++ is the Lean main function.
The main function invokes the Lua interpreter.
The Lua interpreter invokes a C++ Lean API.
Then the Lean API invokes a callback implemented in Lua.
The Lua callback invokes another Lean API.
Now, suppose the Lean API throws an exception.
We want the C++ exception to propagate over the mixed C++/Lua call stack.
We use the clone/rethrow exception idiom to achieve this goal.
Before this commit, the C++ exceptions were converted into strings
using the method what(), and then they were propagated over the Lua
stack using lua_error. A lua_error was then converted into a lua_exception when going back to C++.
This solution was very unsatisfactory, since all C++ exceptions were being converted into a lua_exception, and consequently the structure of the exception was being lost.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
copy_values is not a big if-then-else anymore.
Before this change, whenever we added a new kind of userdata, we would have to update copy_values.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
I removed lua_module helper class because it does not work.
The problem is that the linker may eliminate ignore a object file that contains a lua_module global object used for initialization. When this happens, the associated Lua bindings will not be exposed in the Lua API.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The directory bindings/lua was getting too big and had too many dependencies.
Moreover, it was getting too painful to edit/maintain two different places.
Now, the bindings for module X are in the directory that defines X.
For example, the bindings for util/name.cpp are located at util/name.cpp.
The only exception is the kernel. We do not want to inflate the kernel
with Lua bindings. The bindings for the kernel classes are located
at bindings/kernel_bindings.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
T may be a big object. We minimize the ammount of copying using buffer of (pointers to) cells.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
We need support for recursive locks. The main user of this class is
the environment object. This commit adds a test that demonstrates that
the shared_lock of the environment object may be recursively requested.
Before this fix, the Lean was deadlocking in this example.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
Instead of having m_interrupted flags in several components. We use a thread_local global variable.
The new approach is much simpler to get right since there is no risk of "forgetting" to propagate
the set_interrupt method to sub-components.
The plan is to support set_interrupt methods and m_interrupted flags only in tactic objects.
We need to support them in tactics and tacticals because we want to implement combinators/tacticals such as (try_for T M) that fails if tactic T does not finish in M ms.
For example, consider the tactic:
try-for (T1 ORELSE T2) 5
It tries the tactic (T1 ORELSE T2) for 5ms.
Thus, if T1 does not finish after 5ms an interrupt request is sent, and T1 is interrupted.
Now, if you do not have a m_interrupted flag marking each tactic, the ORELSE combinator will try T2.
The set_interrupt method for ORELSE tactical should turn on the m_interrupted flag.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>