The environment object is a "smart-pointer".
Before this commit, the use of "const &" for environment objects was broken.
For example, suppose we have a function f that should not modify the input environment.
Before this commit, its signature would be
void f(environment const & env)
This is broken, f's implementation can easilty convert it to a read-write pointer by using
the copy constructor.
environment rw_env(env);
Now, f can use rw_env to update env.
To fix this issue, we now have ro_environment. It is a shared *const* pointer.
We can convert an environment into a ro_environment, but not the other way around.
ro_environment can also be seen as a form of documentation.
For example, now it is clear that type_inferer is not updating the environment, since its constructor takes a ro_environment.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
After this commit, a value of type 'expr' cannot be a reference to nullptr.
This commit also fixes several bugs due to the use of 'null' expressions.
TODO: do the same for kernel objects, sexprs, etc.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
operator bool() may produce unwanted conversions.
For example, we had the following bug in the code base.
...
object const & obj = find_object(const_name(n));
if (obj && obj.is_builtin() && obj.get_name() == n)
...
obj.get_name() has type lean::name
n has type lean::expr
Both have 'operator bool()', then the compiler uses the operator to
convert them to Boolean, and then compare the result.
Of course, this is not our intention.
After this commit, the compiler correctly signs the error.
The correct code is
...
object const & obj = find_object(const_name(n));
if (obj && obj.is_builtin() && obj.get_name() == const_name(n))
...
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
The directory bindings/lua was getting too big and had too many dependencies.
Moreover, it was getting too painful to edit/maintain two different places.
Now, the bindings for module X are in the directory that defines X.
For example, the bindings for util/name.cpp are located at util/name.cpp.
The only exception is the kernel. We do not want to inflate the kernel
with Lua bindings. The bindings for the kernel classes are located
at bindings/kernel_bindings.
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>