/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura, Floris van Doorn Various multiplicative and additive structures. Partially modeled on Isabelle's library. -/ import algebra.inf_group open eq eq.ops -- note: ⁻¹ will be overloaded open binary algebra is_trunc set_option class.force_new true variable {A : Type} /- semigroup -/ namespace algebra structure is_set_structure [class] (A : Type) := (is_set_carrier : is_set A) attribute is_set_structure.is_set_carrier [instance] [priority 950] structure semigroup [class] (A : Type) extends is_set_structure A, inf_semigroup A structure comm_semigroup [class] (A : Type) extends semigroup A, comm_inf_semigroup A structure left_cancel_semigroup [class] (A : Type) extends semigroup A, left_cancel_inf_semigroup A structure right_cancel_semigroup [class] (A : Type) extends semigroup A, right_cancel_inf_semigroup A /- additive semigroup -/ definition add_semigroup [class] : Type → Type := semigroup definition add_semigroup.is_set_carrier [instance] [priority 900] (A : Type) [H : add_semigroup A] : is_set A := @is_set_structure.is_set_carrier A (@semigroup.to_is_set_structure A H) definition add_inf_semigroup_of_add_semigroup [reducible] [trans_instance] (A : Type) [H : add_semigroup A] : add_inf_semigroup A := @semigroup.to_inf_semigroup A H definition add_comm_semigroup [class] : Type → Type := comm_semigroup definition add_semigroup_of_add_comm_semigroup [reducible] [trans_instance] (A : Type) [H : add_comm_semigroup A] : add_semigroup A := @comm_semigroup.to_semigroup A H definition add_comm_inf_semigroup_of_add_comm_semigroup [reducible] [trans_instance] (A : Type) [H : add_comm_semigroup A] : add_comm_inf_semigroup A := @comm_semigroup.to_comm_inf_semigroup A H definition add_left_cancel_semigroup [class] : Type → Type := left_cancel_semigroup definition add_semigroup_of_add_left_cancel_semigroup [reducible] [trans_instance] (A : Type) [H : add_left_cancel_semigroup A] : add_semigroup A := @left_cancel_semigroup.to_semigroup A H definition add_left_cancel_inf_semigroup_of_add_left_cancel_semigroup [reducible] [trans_instance] (A : Type) [H : add_left_cancel_semigroup A] : add_left_cancel_inf_semigroup A := @left_cancel_semigroup.to_left_cancel_inf_semigroup A H definition add_right_cancel_semigroup [class] : Type → Type := right_cancel_semigroup definition add_semigroup_of_add_right_cancel_semigroup [reducible] [trans_instance] (A : Type) [H : add_right_cancel_semigroup A] : add_semigroup A := @right_cancel_semigroup.to_semigroup A H definition add_right_cancel_inf_semigroup_of_add_right_cancel_semigroup [reducible] [trans_instance] (A : Type) [H : add_right_cancel_semigroup A] : add_right_cancel_inf_semigroup A := @right_cancel_semigroup.to_right_cancel_inf_semigroup A H /- monoid -/ structure monoid [class] (A : Type) extends semigroup A, inf_monoid A structure comm_monoid [class] (A : Type) extends monoid A, comm_semigroup A, comm_inf_monoid A /- additive monoid -/ definition add_monoid [class] : Type → Type := monoid definition add_semigroup_of_add_monoid [reducible] [trans_instance] (A : Type) [H : add_monoid A] : add_semigroup A := @monoid.to_semigroup A H definition add_inf_monoid_of_add_monoid [reducible] [trans_instance] (A : Type) [H : add_monoid A] : add_inf_monoid A := @monoid.to_inf_monoid A H definition add_comm_monoid [class] : Type → Type := comm_monoid definition add_monoid_of_add_comm_monoid [reducible] [trans_instance] (A : Type) [H : add_comm_monoid A] : add_monoid A := @comm_monoid.to_monoid A H definition add_comm_semigroup_of_add_comm_monoid [reducible] [trans_instance] (A : Type) [H : add_comm_monoid A] : add_comm_semigroup A := @comm_monoid.to_comm_semigroup A H definition add_comm_inf_monoid_of_add_comm_monoid [reducible] [trans_instance] (A : Type) [H : add_comm_monoid A] : add_comm_inf_monoid A := @comm_monoid.to_comm_inf_monoid A H definition add_monoid.to_monoid {A : Type} [s : add_monoid A] : monoid A := s definition add_comm_monoid.to_comm_monoid {A : Type} [s : add_comm_monoid A] : comm_monoid A := s definition monoid.to_add_monoid {A : Type} [s : monoid A] : add_monoid A := s definition comm_monoid.to_add_comm_monoid {A : Type} [s : comm_monoid A] : add_comm_monoid A := s /- group -/ structure group [class] (A : Type) extends monoid A, inf_group A definition group_of_inf_group (A : Type) [s : inf_group A] [is_set A] : group A := ⦃group, s, is_set_carrier := _⦄ section group variable [s : group A] include s definition group.to_left_cancel_semigroup [trans_instance] : left_cancel_semigroup A := ⦃ left_cancel_semigroup, s, mul_left_cancel := @mul_left_cancel A _ ⦄ definition group.to_right_cancel_semigroup [trans_instance] : right_cancel_semigroup A := ⦃ right_cancel_semigroup, s, mul_right_cancel := @mul_right_cancel A _ ⦄ end group structure ab_group [class] (A : Type) extends group A, comm_monoid A, ab_inf_group A definition ab_group_of_ab_inf_group (A : Type) [s : ab_inf_group A] [is_set A] : ab_group A := ⦃ab_group, s, is_set_carrier := _⦄ /- additive group -/ definition add_group [class] : Type → Type := group definition add_semigroup_of_add_group [reducible] [trans_instance] (A : Type) [H : add_group A] : add_monoid A := @group.to_monoid A H definition add_inf_group_of_add_group [reducible] [trans_instance] (A : Type) [H : add_group A] : add_inf_group A := @group.to_inf_group A H definition add_group.to_group {A : Type} [s : add_group A] : group A := s definition group.to_add_group {A : Type} [s : group A] : add_group A := s definition add_group_of_add_inf_group (A : Type) [s : add_inf_group A] [is_set A] : add_group A := ⦃group, s, is_set_carrier := _⦄ section add_group variables [s : add_group A] include s definition add_group.to_add_left_cancel_semigroup [reducible] [trans_instance] : add_left_cancel_semigroup A := @group.to_left_cancel_semigroup A s definition add_group.to_add_right_cancel_semigroup [reducible] [trans_instance] : add_right_cancel_semigroup A := @group.to_right_cancel_semigroup A s end add_group definition add_ab_group [class] : Type → Type := ab_group definition add_group_of_add_ab_group [reducible] [trans_instance] (A : Type) [H : add_ab_group A] : add_group A := @ab_group.to_group A H definition add_comm_monoid_of_add_ab_group [reducible] [trans_instance] (A : Type) [H : add_ab_group A] : add_comm_monoid A := @ab_group.to_comm_monoid A H definition add_ab_inf_group_of_add_ab_group [reducible] [trans_instance] (A : Type) [H : add_ab_group A] : add_ab_inf_group A := @ab_group.to_ab_inf_group A H definition add_ab_group.to_ab_group {A : Type} [s : add_ab_group A] : ab_group A := s definition ab_group.to_add_ab_group {A : Type} [s : ab_group A] : add_ab_group A := s definition add_ab_group_of_add_ab_inf_group (A : Type) [s : add_ab_inf_group A] [is_set A] : add_ab_group A := ⦃ab_group, s, is_set_carrier := _⦄ definition group_of_add_group (A : Type) [G : add_group A] : group A := ⦃group, mul := has_add.add, mul_assoc := add.assoc, one := !has_zero.zero, one_mul := zero_add, mul_one := add_zero, inv := has_neg.neg, mul_left_inv := add.left_inv, is_set_carrier := _⦄ end algebra open algebra