/- Copyright (c) 2016 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad Min and max over finite sets. To support constructive theories, we start with the class decidable_linear_ordered_cancel_comm_monoid, because: (1) We need a decidable linear order to have min and max (2) We need a default element for min and max over the empty set, and max empty = 0 is the right choice for nat. (3) All our number classes are instances. We can define variants of Min and Max if needed. -/ import .group_bigops .ordered_ring variables {A B : Type} section variable [decidable_linear_order A] definition max_comm_semigroup : comm_semigroup A := ⦃ comm_semigroup, mul := max, mul_assoc := max.assoc, mul_comm := max.comm ⦄ definition min_comm_semigroup : comm_semigroup A := ⦃ comm_semigroup, mul := min, mul_assoc := min.assoc, mul_comm := min.comm ⦄ end /- finset versions -/ namespace finset section deceq_A variable [decidable_eq A] section decidable_linear_ordered_cancel_comm_monoid_B variable [decidable_linear_ordered_cancel_comm_monoid B] section max_comm_semigroup local attribute max_comm_semigroup [instance] open Prod_semigroup definition Max (s : finset A) (f : A → B) : B := Prod_semigroup 0 s f notation `Max` binders `∈` s `, ` r:(scoped f, Max s f) := r proposition Max_empty (f : A → B) : (Max x ∈ ∅, f x) = 0 := !Prod_semigroup_empty proposition Max_singleton (f : A → B) (a : A) : (Max x ∈ '{a}, f x) = f a := !Prod_semigroup_singleton proposition Max_insert_insert (f : A → B) {a₁ a₂ : A} {s : finset A} : a₂ ∉ s → a₁ ∉ insert a₂ s → (Max x ∈ insert a₁ (insert a₂ s), f x) = max (f a₁) (Max x ∈ insert a₂ s, f x) := !Prod_semigroup_insert_insert proposition Max_insert (f : A → B) {a : A} {s : finset A} (anins : a ∉ s) (sne : s ≠ ∅) : (Max x ∈ insert a s, f x) = max (f a) (Max x ∈ s, f x) := !Prod_semigroup_insert anins sne end max_comm_semigroup proposition Max_pair (f : A → B) (a₁ a₂ : A) : (Max x ∈ '{a₁, a₂}, f x) = max (f a₁) (f a₂) := decidable.by_cases (suppose a₁ = a₂, by rewrite [this, pair_eq_singleton, max_self] ) (suppose a₁ ≠ a₂, have a₁ ∉ '{a₂}, by rewrite [mem_singleton_iff]; apply this, using this, by rewrite [Max_insert f this !singleton_ne_empty]) proposition le_Max (f : A → B) {a : A} {s : finset A} (H : a ∈ s) : f a ≤ Max x ∈ s, f x := begin induction s with a' s' a'nins' ih, {exact false.elim (not_mem_empty a H)}, cases (decidable.em (s' = ∅)) with s'empty s'nempty, {rewrite [s'empty at *, Max_singleton, eq_of_mem_singleton H]}, rewrite [Max_insert f a'nins' s'nempty], cases (eq_or_mem_of_mem_insert H) with aeqa' ains', {rewrite aeqa', apply le_max_left}, apply le.trans (ih ains') !le_max_right end proposition Max_le (f : A → B) {s : finset A} {b : B} (sne : s ≠ ∅) (H : ∀ a, a ∈ s → f a ≤ b) : (Max x ∈ s, f x) ≤ b := begin induction s with a' s' a'nins' ih, {exact absurd rfl sne}, cases (decidable.em (s' = ∅)) with s'empty s'nempty, {rewrite [s'empty, Max_singleton], exact H a' !mem_insert}, rewrite [Max_insert f a'nins' s'nempty], apply max_le (H a' !mem_insert), apply ih s'nempty, intro a H', exact H a (mem_insert_of_mem a' H') end proposition Max_add_right (f : A → B) {s : finset A} (b : B) (sne : s ≠ ∅) : (Max x ∈ s, f x + b) = (Max x ∈ s, f x) + b := begin induction s with a' s' a'nins' ih, {exact absurd rfl sne}, cases (decidable.em (s' = ∅)) with s'empty s'ne, {rewrite [s'empty, Max_singleton]}, rewrite [*Max_insert _ a'nins' s'ne, ih s'ne, max_add_add_right] end proposition Max_add_left (f : A → B) {s : finset A} (b : B) (sne : s ≠ ∅) : (Max x ∈ s, b + f x) = b + (Max x ∈ s, f x) := begin induction s with a' s' a'nins' ih, {exact absurd rfl sne}, cases (decidable.em (s' = ∅)) with s'empty s'ne, {rewrite [s'empty, Max_singleton]}, rewrite [*Max_insert _ a'nins' s'ne, ih s'ne, max_add_add_left] end section min_comm_semigroup local attribute min_comm_semigroup [instance] open Prod_semigroup definition Min (s : finset A) (f : A → B) : B := Prod_semigroup 0 s f notation `Min` binders `∈` s `, ` r:(scoped f, Min s f) := r proposition Min_empty (f : A → B) : (Min x ∈ ∅, f x) = 0 := !Prod_semigroup_empty proposition Min_singleton (f : A → B) (a : A) : (Min x ∈ '{a}, f x) = f a := !Prod_semigroup_singleton proposition Min_insert_insert (f : A → B) {a₁ a₂ : A} {s : finset A} : a₂ ∉ s → a₁ ∉ insert a₂ s → (Min x ∈ insert a₁ (insert a₂ s), f x) = min (f a₁) (Min x ∈ insert a₂ s, f x) := !Prod_semigroup_insert_insert proposition Min_insert (f : A → B) {a : A} {s : finset A} (anins : a ∉ s) (sne : s ≠ ∅) : (Min x ∈ insert a s, f x) = min (f a) (Min x ∈ s, f x) := !Prod_semigroup_insert anins sne end min_comm_semigroup proposition Min_pair (f : A → B) (a₁ a₂ : A) : (Min x ∈ '{a₁, a₂}, f x) = min (f a₁) (f a₂) := decidable.by_cases (suppose a₁ = a₂, by rewrite [this, pair_eq_singleton, min_self] ) (suppose a₁ ≠ a₂, have a₁ ∉ '{a₂}, by rewrite [mem_singleton_iff]; apply this, using this, by rewrite [Min_insert f this !singleton_ne_empty]) proposition Min_le (f : A → B) {a : A} {s : finset A} (H : a ∈ s) : (Min x ∈ s, f x) ≤ f a := begin induction s with a' s' a'nins' ih, {exact false.elim (not_mem_empty a H)}, cases (decidable.em (s' = ∅)) with s'empty s'nempty, {rewrite [s'empty at *, Min_singleton, eq_of_mem_singleton H]}, rewrite [Min_insert f a'nins' s'nempty], cases (eq_or_mem_of_mem_insert H) with aeqa' ains', {rewrite aeqa', apply min_le_left}, apply le.trans !min_le_right (ih ains') end proposition le_Min (f : A → B) {s : finset A} {b : B} (sne : s ≠ ∅) (H : ∀ a, a ∈ s → b ≤ f a) : b ≤ Min x ∈ s, f x := begin induction s with a' s' a'nins' ih, {exact absurd rfl sne}, cases (decidable.em (s' = ∅)) with s'empty s'nempty, {rewrite [s'empty, Min_singleton], exact H a' !mem_insert}, rewrite [Min_insert f a'nins' s'nempty], apply le_min (H a' !mem_insert), apply ih s'nempty, intro a H', exact H a (mem_insert_of_mem a' H') end proposition Min_add_right (f : A → B) {s : finset A} (b : B) (sne : s ≠ ∅) : (Min x ∈ s, f x + b) = (Min x ∈ s, f x) + b := begin induction s with a' s' a'nins' ih, {exact absurd rfl sne}, cases (decidable.em (s' = ∅)) with s'empty s'ne, {rewrite [s'empty, Min_singleton]}, rewrite [*Min_insert _ a'nins' s'ne, ih s'ne, min_add_add_right] end proposition Min_add_left (f : A → B) {s : finset A} (b : B) (sne : s ≠ ∅) : (Min x ∈ s, b + f x) = b + (Min x ∈ s, f x) := begin induction s with a' s' a'nins' ih, {exact absurd rfl sne}, cases (decidable.em (s' = ∅)) with s'empty s'ne, {rewrite [s'empty, Min_singleton]}, rewrite [*Min_insert _ a'nins' s'ne, ih s'ne, min_add_add_left] end end decidable_linear_ordered_cancel_comm_monoid_B section decidable_linear_ordered_comm_group_B variable [decidable_linear_ordered_comm_group B] proposition Max_neg (f : A → B) (s : finset A) : (Max x ∈ s, - f x) = - Min x ∈ s, f x := begin cases (decidable.em (s = ∅)) with se sne, {rewrite [se, Max_empty, Min_empty, neg_zero]}, apply eq_of_le_of_ge, {apply !Max_le sne, intro a ains, apply neg_le_neg, apply !Min_le ains}, apply neg_le_of_neg_le, apply !le_Min sne, intro a ains, apply neg_le_of_neg_le, apply !le_Max ains end proposition Min_neg (f : A → B) (s : finset A) : (Min x ∈ s, - f x) = - Max x ∈ s, f x := begin cases (decidable.em (s = ∅)) with se sne, {rewrite [se, Max_empty, Min_empty, neg_zero]}, apply eq_of_le_of_ge, {apply le_neg_of_le_neg, apply !Max_le sne, intro a ains, apply le_neg_of_le_neg, apply !Min_le ains}, apply !le_Min sne, intro a ains, apply neg_le_neg, apply !le_Max ains end proposition Max_eq_neg_Min_neg (f : A → B) (s : finset A) : (Max x ∈ s, f x) = - Min x ∈ s, - f x := by rewrite [Min_neg, neg_neg] proposition Min_eq_neg_Max_neg (f : A → B) (s : finset A) : (Min x ∈ s, f x) = - Max x ∈ s, - f x := by rewrite [Max_neg, neg_neg] end decidable_linear_ordered_comm_group_B end deceq_A /- Min and Max *of* a finset -/ section decidable_linear_ordered_semiring_A variable [decidable_linear_ordered_semiring A] definition Max₀ (s : finset A) : A := Max x ∈ s, x definition Min₀ (s : finset A) : A := Min x ∈ s, x proposition Max₀_empty : Max₀ ∅ = (0 : A) := !Max_empty proposition Max₀_singleton (a : A) : Max₀ '{a} = a := !Max_singleton proposition Max₀_insert_insert {a₁ a₂ : A} {s : finset A} (H₁ : a₂ ∉ s) (H₂ : a₁ ∉ insert a₂ s) : Max₀ (insert a₁ (insert a₂ s)) = max a₁ (Max₀ (insert a₂ s)) := !Max_insert_insert H₁ H₂ proposition Max₀_insert {s : finset A} {a : A} (anins : a ∉ s) (sne : s ≠ ∅) : Max₀ (insert a s) = max a (Max₀ s) := !Max_insert anins sne proposition Max₀_pair (a₁ a₂ : A) : Max₀ '{a₁, a₂} = max a₁ a₂ := !Max_pair proposition le_Max₀ {a : A} {s : finset A} (H : a ∈ s) : a ≤ Max₀ s := !le_Max H proposition Max₀_le {s : finset A} {a : A} (sne : s ≠ ∅) (H : ∀ x, x ∈ s → x ≤ a) : Max₀ s ≤ a := !Max_le sne H proposition Min₀_empty : Min₀ ∅ = (0 : A) := !Min_empty proposition Min₀_singleton (a : A) : Min₀ '{a} = a := !Min_singleton proposition Min₀_insert_insert {a₁ a₂ : A} {s : finset A} (H₁ : a₂ ∉ s) (H₂ : a₁ ∉ insert a₂ s) : Min₀ (insert a₁ (insert a₂ s)) = min a₁ (Min₀ (insert a₂ s)) := !Min_insert_insert H₁ H₂ proposition Min₀_insert {s : finset A} {a : A} (anins : a ∉ s) (sne : s ≠ ∅) : Min₀ (insert a s) = min a (Min₀ s) := !Min_insert anins sne proposition Min₀_pair (a₁ a₂ : A) : Min₀ '{a₁, a₂} = min a₁ a₂ := !Min_pair proposition Min₀_le {a : A} {s : finset A} (H : a ∈ s) : Min₀ s ≤ a := !Min_le H proposition le_Min₀ {s : finset A} {a : A} (sne : s ≠ ∅) (H : ∀ x, x ∈ s → a ≤ x) : a ≤ Min₀ s := !le_Min sne H end decidable_linear_ordered_semiring_A end finset /- finite set versions -/ namespace set open classical section decidable_linear_ordered_cancel_comm_monoid_B variable [decidable_linear_ordered_cancel_comm_monoid B] noncomputable definition Max (s : set A) (f : A → B) : B := finset.Max (to_finset s) f notation `Max` binders `∈` s `, ` r:(scoped f, Max s f) := r noncomputable definition Min (s : set A) (f : A → B) : B := finset.Min (to_finset s) f notation `Min` binders `∈` s `, ` r:(scoped f, Min s f) := r proposition Max_empty (f : A → B) : (Max x ∈ ∅, f x) = 0 := by rewrite [↑set.Max, to_finset_empty, finset.Max_empty] proposition Max_singleton (f : A → B) (a : A) : (Max x ∈ '{a}, f x) = f a := by rewrite [↑set.Max, to_finset_insert, to_finset_empty, finset.Max_singleton] proposition Max_insert_insert (f : A → B) {a₁ a₂ : A} {s : set A} [h : finite s] : a₂ ∉ s → a₁ ∉ insert a₂ s → (Max x ∈ insert a₁ (insert a₂ s), f x) = max (f a₁) (Max x ∈ insert a₂ s, f x) := begin rewrite [↑set.Max, -+mem_to_finset_eq, +to_finset_insert], apply finset.Max_insert_insert end proposition Max_insert (f : A → B) {a : A} {s : set A} [h : finite s] (anins : a ∉ s) (sne : s ≠ ∅) : (Max x ∈ insert a s, f x) = max (f a) (Max x ∈ s, f x) := begin revert anins sne, rewrite [↑set.Max, -+mem_to_finset_eq, +to_finset_insert], intro h1 h2, apply finset.Max_insert f h1 (λ h', h2 (eq_empty_of_to_finset_eq_empty h')), end proposition Max_pair (f : A → B) (a₁ a₂ : A) : (Max x ∈ '{a₁, a₂}, f x) = max (f a₁) (f a₂) := by rewrite [↑set.Max, +to_finset_insert, +to_finset_empty, finset.Max_pair] proposition le_Max (f : A → B) {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : f a ≤ Max x ∈ s, f x := by rewrite [-+mem_to_finset_eq at H, ↑set.Max]; exact finset.le_Max f H proposition Max_le (f : A → B) {s : set A} [fins : finite s] {b : B} (sne : s ≠ ∅) (H : ∀ a, a ∈ s → f a ≤ b) : (Max x ∈ s, f x) ≤ b := begin rewrite [↑set.Max], apply finset.Max_le f (λ H', sne (eq_empty_of_to_finset_eq_empty H')), intro a H', apply H a, rewrite mem_to_finset_eq at H', exact H' end proposition Max_add_right (f : A → B) {s : set A} [fins : finite s] (b : B) (sne : s ≠ ∅) : (Max x ∈ s, f x + b) = (Max x ∈ s, f x) + b := begin rewrite [↑set.Max], apply finset.Max_add_right f b (λ h, sne (eq_empty_of_to_finset_eq_empty h)) end proposition Max_add_left (f : A → B) {s : set A} [fins : finite s] (b : B) (sne : s ≠ ∅) : (Max x ∈ s, b + f x) = b + (Max x ∈ s, f x) := begin rewrite [↑set.Max], apply finset.Max_add_left f b (λ h, sne (eq_empty_of_to_finset_eq_empty h)) end proposition Min_empty (f : A → B) : (Min x ∈ ∅, f x) = 0 := by rewrite [↑set.Min, to_finset_empty, finset.Min_empty] proposition Min_singleton (f : A → B) (a : A) : (Min x ∈ '{a}, f x) = f a := by rewrite [↑set.Min, to_finset_insert, to_finset_empty, finset.Min_singleton] proposition Min_insert_insert (f : A → B) {a₁ a₂ : A} {s : set A} [h : finite s] : a₂ ∉ s → a₁ ∉ insert a₂ s → (Min x ∈ insert a₁ (insert a₂ s), f x) = min (f a₁) (Min x ∈ insert a₂ s, f x) := begin rewrite [↑set.Min, -+mem_to_finset_eq, +to_finset_insert], apply finset.Min_insert_insert end proposition Min_insert (f : A → B) {a : A} {s : set A} [h : finite s] (anins : a ∉ s) (sne : s ≠ ∅) : (Min x ∈ insert a s, f x) = min (f a) (Min x ∈ s, f x) := begin revert anins sne, rewrite [↑set.Min, -+mem_to_finset_eq, +to_finset_insert], intro h1 h2, apply finset.Min_insert f h1 (λ h', h2 (eq_empty_of_to_finset_eq_empty h')), end proposition Min_pair (f : A → B) (a₁ a₂ : A) : (Min x ∈ '{a₁, a₂}, f x) = min (f a₁) (f a₂) := by rewrite [↑set.Min, +to_finset_insert, +to_finset_empty, finset.Min_pair] proposition Min_le (f : A → B) {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : (Min x ∈ s, f x) ≤ f a := by rewrite [-+mem_to_finset_eq at H, ↑set.Min]; exact finset.Min_le f H proposition le_Min (f : A → B) {s : set A} [fins : finite s] {b : B} (sne : s ≠ ∅) (H : ∀ a, a ∈ s → b ≤ f a) : b ≤ Min x ∈ s, f x := begin rewrite [↑set.Min], apply finset.le_Min f (λ H', sne (eq_empty_of_to_finset_eq_empty H')), intro a H', apply H a, rewrite mem_to_finset_eq at H', exact H' end proposition Min_add_right (f : A → B) {s : set A} [fins : finite s] (b : B) (sne : s ≠ ∅) : (Min x ∈ s, f x + b) = (Min x ∈ s, f x) + b := begin rewrite [↑set.Min], apply finset.Min_add_right f b (λ h, sne (eq_empty_of_to_finset_eq_empty h)) end proposition Min_add_left (f : A → B) {s : set A} [fins : finite s] (b : B) (sne : s ≠ ∅) : (Min x ∈ s, b + f x) = b + (Min x ∈ s, f x) := begin rewrite [↑set.Min], apply finset.Min_add_left f b (λ h, sne (eq_empty_of_to_finset_eq_empty h)) end end decidable_linear_ordered_cancel_comm_monoid_B section decidable_linear_ordered_comm_group_B variable [decidable_linear_ordered_comm_group B] proposition Max_neg (f : A → B) (s : set A) : (Max x ∈ s, - f x) = - Min x ∈ s, f x := by rewrite [↑set.Max, finset.Max_neg] proposition Min_neg (f : A → B) (s : set A) : (Min x ∈ s, - f x) = - Max x ∈ s, f x := by rewrite [↑set.Min, finset.Min_neg] proposition Max_eq_neg_Min_neg (f : A → B) (s : set A) : (Max x ∈ s, f x) = - Min x ∈ s, - f x := by rewrite [↑set.Max, ↑set.Min, finset.Max_eq_neg_Min_neg] proposition Min_eq_neg_Max_neg (f : A → B) (s : set A) : (Min x ∈ s, f x) = - Max x ∈ s, - f x := by rewrite [↑set.Max, ↑set.Min, finset.Min_eq_neg_Max_neg] end decidable_linear_ordered_comm_group_B section decidable_linear_ordered_semiring_A variable [decidable_linear_ordered_semiring A] noncomputable definition Max₀ (s : set A) : A := Max x ∈ s, x noncomputable definition Min₀ (s : set A) : A := Min x ∈ s, x proposition Max₀_empty : Max₀ ∅ = (0 : A) := !Max_empty proposition Max₀_singleton (a : A) : Max₀ '{a} = a := !Max_singleton proposition Max₀_insert_insert {a₁ a₂ : A} {s : set A} [fins : finite s] (H₁ : a₂ ∉ s) (H₂ : a₁ ∉ insert a₂ s) : Max₀ (insert a₁ (insert a₂ s)) = max a₁ (Max₀ (insert a₂ s)) := !Max_insert_insert H₁ H₂ proposition Max₀_insert {s : set A} [fins : finite s] {a : A} (anins : a ∉ s) (sne : s ≠ ∅) : Max₀ (insert a s) = max a (Max₀ s) := !Max_insert anins sne proposition Max₀_pair (a₁ a₂ : A) : Max₀ '{a₁, a₂} = max a₁ a₂ := !Max_pair proposition le_Max₀ {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : a ≤ Max₀ s := !le_Max H proposition Max₀_le {s : set A} [fins : finite s] {a : A} (sne : s ≠ ∅) (H : ∀ x, x ∈ s → x ≤ a) : Max₀ s ≤ a := !Max_le sne H proposition Min₀_empty : Min₀ ∅ = (0 : A) := !Min_empty proposition Min₀_singleton (a : A) : Min₀ '{a} = a := !Min_singleton proposition Min₀_insert_insert {a₁ a₂ : A} {s : set A} [fins : finite s] (H₁ : a₂ ∉ s) (H₂ : a₁ ∉ insert a₂ s) : Min₀ (insert a₁ (insert a₂ s)) = min a₁ (Min₀ (insert a₂ s)) := !Min_insert_insert H₁ H₂ proposition Min₀_insert {s : set A} [fins : finite s] {a : A} (anins : a ∉ s) (sne : s ≠ ∅) : Min₀ (insert a s) = min a (Min₀ s) := !Min_insert anins sne proposition Min₀_pair (a₁ a₂ : A) : Min₀ '{a₁, a₂} = min a₁ a₂ := !Min_pair proposition Min₀_le {a : A} {s : set A} [fins : finite s] (H : a ∈ s) : Min₀ s ≤ a := !Min_le H proposition le_Min₀ {s : set A} [fins : finite s] {a : A} (sne : s ≠ ∅) (H : ∀ x, x ∈ s → a ≤ x) : a ≤ Min₀ s := !le_Min sne H end decidable_linear_ordered_semiring_A end set