/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Show that tail recursive fib is equal to standard one. -/ import data.nat open nat definition fib : nat → nat | 0 := 1 | 1 := 1 | (n+2) := fib (n+1) + fib n private definition fib_fast_aux : nat → nat → nat → nat | 0 i j := j | (succ n) i j := fib_fast_aux n j (j+i) lemma fib_fast_aux_lemma : ∀ n m, fib_fast_aux n (fib m) (fib (succ m)) = fib (succ (n + m)) | 0 m := by rewrite nat.zero_add | (succ n) m := begin have ih : fib_fast_aux n (fib (succ m)) (fib (succ (succ m))) = fib (succ (n + succ m)), from fib_fast_aux_lemma n (succ m), have h₁ : fib (succ m) + fib m = fib (succ (succ m)), from rfl, unfold fib_fast_aux, rewrite [h₁, ih, succ_add, add_succ] end definition fib_fast (n: nat) := fib_fast_aux n 0 1 lemma fib_fast_eq_fib : ∀ n, fib_fast n = fib n | 0 := rfl | (succ n) := begin have h₁ : fib_fast_aux n (fib 0) (fib 1) = fib (succ n), from !fib_fast_aux_lemma, unfold [fib_fast, fib_fast_aux], krewrite h₁ end