/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Basic theorems about pathovers -/ prelude import .path .equiv open equiv is_equiv equiv.ops variables {A A' : Type} {B B' : A → Type} {C : Πa, B a → Type} {a a₂ a₃ a₄ : A} {p p' : a = a₂} {p₂ : a₂ = a₃} {p₃ : a₃ = a₄} {b b' : B a} {b₂ b₂' : B a₂} {b₃ : B a₃} {b₄ : B a₄} {c : C a b} {c₂ : C a₂ b₂} namespace eq inductive pathover.{l} (B : A → Type.{l}) (b : B a) : Π{a₂ : A}, a = a₂ → B a₂ → Type.{l} := idpatho : pathover B b (refl a) b notation b `=[`:50 p:0 `]`:0 b₂:50 := pathover _ b p b₂ definition idpo [reducible] [constructor] : b =[refl a] b := pathover.idpatho b /- equivalences with equality using transport -/ definition pathover_of_tr_eq (r : p ▸ b = b₂) : b =[p] b₂ := by cases p; cases r; exact idpo definition pathover_of_eq_tr (r : b = p⁻¹ ▸ b₂) : b =[p] b₂ := by cases p; cases r; exact idpo definition tr_eq_of_pathover [unfold 8] (r : b =[p] b₂) : p ▸ b = b₂ := by cases r; exact idp definition eq_tr_of_pathover [unfold 8] (r : b =[p] b₂) : b = p⁻¹ ▸ b₂ := by cases r; exact idp definition pathover_equiv_tr_eq [constructor] (p : a = a₂) (b : B a) (b₂ : B a₂) : (b =[p] b₂) ≃ (p ▸ b = b₂) := begin fapply equiv.MK, { exact tr_eq_of_pathover}, { exact pathover_of_tr_eq}, { intro r, cases p, cases r, apply idp}, { intro r, cases r, apply idp}, end definition pathover_equiv_eq_tr [constructor] (p : a = a₂) (b : B a) (b₂ : B a₂) : (b =[p] b₂) ≃ (b = p⁻¹ ▸ b₂) := begin fapply equiv.MK, { exact eq_tr_of_pathover}, { exact pathover_of_eq_tr}, { intro r, cases p, cases r, apply idp}, { intro r, cases r, apply idp}, end definition pathover_tr [unfold 5] (p : a = a₂) (b : B a) : b =[p] p ▸ b := by cases p;exact idpo definition tr_pathover [unfold 5] (p : a = a₂) (b : B a₂) : p⁻¹ ▸ b =[p] b := pathover_of_eq_tr idp definition concato [unfold 12] (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) : b =[p ⬝ p₂] b₃ := pathover.rec_on r₂ r definition inverseo [unfold 8] (r : b =[p] b₂) : b₂ =[p⁻¹] b := pathover.rec_on r idpo definition apdo [unfold 6] (f : Πa, B a) (p : a = a₂) : f a =[p] f a₂ := eq.rec_on p idpo definition oap [unfold 6] {C : A → Type} (f : Πa, B a → C a) (p : a = a₂) : f a =[p] f a₂ := eq.rec_on p idpo definition concato_eq [unfold 10] (r : b =[p] b₂) (q : b₂ = b₂') : b =[p] b₂' := eq.rec_on q r definition eq_concato [unfold 9] (q : b = b') (r : b' =[p] b₂) : b =[p] b₂ := by induction q;exact r -- infix `⬝` := concato infix `⬝o`:75 := concato infix `⬝op`:75 := concato_eq infix `⬝po`:75 := eq_concato -- postfix `⁻¹` := inverseo postfix `⁻¹ᵒ`:(max+10) := inverseo /- Some of the theorems analogous to theorems for = in init.path -/ definition cono_idpo (r : b =[p] b₂) : r ⬝o idpo =[con_idp p] r := pathover.rec_on r idpo definition idpo_cono (r : b =[p] b₂) : idpo ⬝o r =[idp_con p] r := pathover.rec_on r idpo definition cono.assoc' (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) : r ⬝o (r₂ ⬝o r₃) =[!con.assoc'] (r ⬝o r₂) ⬝o r₃ := pathover.rec_on r₃ (pathover.rec_on r₂ (pathover.rec_on r idpo)) definition cono.assoc (r : b =[p] b₂) (r₂ : b₂ =[p₂] b₃) (r₃ : b₃ =[p₃] b₄) : (r ⬝o r₂) ⬝o r₃ =[!con.assoc] r ⬝o (r₂ ⬝o r₃) := pathover.rec_on r₃ (pathover.rec_on r₂ (pathover.rec_on r idpo)) definition cono.right_inv (r : b =[p] b₂) : r ⬝o r⁻¹ᵒ =[!con.right_inv] idpo := pathover.rec_on r idpo definition cono.left_inv (r : b =[p] b₂) : r⁻¹ᵒ ⬝o r =[!con.left_inv] idpo := pathover.rec_on r idpo definition eq_of_pathover {a' a₂' : A'} (q : a' =[p] a₂') : a' = a₂' := by cases q;reflexivity definition pathover_of_eq {a' a₂' : A'} (q : a' = a₂') : a' =[p] a₂' := by cases p;cases q;exact idpo definition pathover_constant [constructor] (p : a = a₂) (a' a₂' : A') : a' =[p] a₂' ≃ a' = a₂' := begin fapply equiv.MK, { exact eq_of_pathover}, { exact pathover_of_eq}, { intro r, cases p, cases r, exact idp}, { intro r, cases r, exact idp}, end definition eq_of_pathover_idp [unfold 6] {b' : B a} (q : b =[idpath a] b') : b = b' := tr_eq_of_pathover q --should B be explicit in the next two definitions? definition pathover_idp_of_eq [unfold 6] {b' : B a} (q : b = b') : b =[idpath a] b' := pathover_of_tr_eq q definition pathover_idp [constructor] (b : B a) (b' : B a) : b =[idpath a] b' ≃ b = b' := equiv.MK eq_of_pathover_idp (pathover_idp_of_eq) (to_right_inv !pathover_equiv_tr_eq) (to_left_inv !pathover_equiv_tr_eq) -- definition pathover_idp (b : B a) (b' : B a) : b =[idpath a] b' ≃ b = b' := -- pathover_equiv_tr_eq idp b b' -- definition eq_of_pathover_idp [reducible] {b' : B a} (q : b =[idpath a] b') : b = b' := -- to_fun !pathover_idp q -- definition pathover_idp_of_eq [reducible] {b' : B a} (q : b = b') : b =[idpath a] b' := -- to_inv !pathover_idp q definition idp_rec_on [recursor] {P : Π⦃b₂ : B a⦄, b =[idpath a] b₂ → Type} {b₂ : B a} (r : b =[idpath a] b₂) (H : P idpo) : P r := have H2 : P (pathover_idp_of_eq (eq_of_pathover_idp r)), from eq.rec_on (eq_of_pathover_idp r) H, proof left_inv !pathover_idp r ▸ H2 qed definition rec_on_right [recursor] {P : Π⦃b₂ : B a₂⦄, b =[p] b₂ → Type} {b₂ : B a₂} (r : b =[p] b₂) (H : P !pathover_tr) : P r := by cases r; exact H definition rec_on_left [recursor] {P : Π⦃b : B a⦄, b =[p] b₂ → Type} {b : B a} (r : b =[p] b₂) (H : P !tr_pathover) : P r := by cases r; exact H --pathover with fibration B' ∘ f definition pathover_ap [unfold 10] (B' : A' → Type) (f : A → A') {p : a = a₂} {b : B' (f a)} {b₂ : B' (f a₂)} (q : b =[p] b₂) : b =[ap f p] b₂ := by cases q; exact idpo definition pathover_of_pathover_ap (B' : A' → Type) (f : A → A') {p : a = a₂} {b : B' (f a)} {b₂ : B' (f a₂)} (q : b =[ap f p] b₂) : b =[p] b₂ := by cases p; apply (idp_rec_on q); apply idpo definition pathover_compose (B' : A' → Type) (f : A → A') (p : a = a₂) (b : B' (f a)) (b₂ : B' (f a₂)) : b =[p] b₂ ≃ b =[ap f p] b₂ := begin fapply equiv.MK, { apply pathover_ap}, { apply pathover_of_pathover_ap}, { intro q, cases p, esimp, apply (idp_rec_on q), apply idp}, { intro q, cases q, exact idp}, end definition apdo_con (f : Πa, B a) (p : a = a₂) (q : a₂ = a₃) : apdo f (p ⬝ q) = apdo f p ⬝o apdo f q := by cases p; cases q; exact idp definition apdo_inv (f : Πa, B a) (p : a = a₂) : apdo f p⁻¹ = (apdo f p)⁻¹ᵒ := by cases p; exact idp definition apdo_eq_pathover_of_eq_ap (f : A → A') (p : a = a₂) : apdo f p = pathover_of_eq (ap f p) := eq.rec_on p idp definition pathover_of_pathover_tr (q : b =[p ⬝ p₂] p₂ ▸ b₂) : b =[p] b₂ := by cases p₂;exact q definition pathover_tr_of_pathover {p : a = a₃} (q : b =[p ⬝ p₂⁻¹] b₂) : b =[p] p₂ ▸ b₂ := by cases p₂;exact q definition pathover_tr_of_eq (q : b = b') : b =[p] p ▸ b' := by cases q;apply pathover_tr definition tr_pathover_of_eq (q : b₂ = b₂') : p⁻¹ ▸ b₂ =[p] b₂' := by cases q;apply tr_pathover definition apo011 (f : Πa, B a → A') (Ha : a = a₂) (Hb : b =[Ha] b₂) : f a b = f a₂ b₂ := by cases Hb; exact idp definition apo0111 (f : Πa b, C a b → A') (Ha : a = a₂) (Hb : b =[Ha] b₂) (Hc : c =[apo011 C Ha Hb] c₂) : f a b c = f a₂ b₂ c₂ := by cases Hb; apply (idp_rec_on Hc); apply idp definition apo11 {f : Πb, C a b} {g : Πb₂, C a₂ b₂} (r : f =[p] g) {b : B a} {b₂ : B a₂} (q : b =[p] b₂) : f b =[apo011 C p q] g b₂ := by cases r; apply (idp_rec_on q); exact idpo definition apo10 {f : Πb, C a b} {g : Πb₂, C a₂ b₂} (r : f =[p] g) {b : B a} : f b =[apo011 C p !pathover_tr] g (p ▸ b) := by cases r; exact idpo definition cono.right_inv_eq (q : b = b') : concato_eq (pathover_idp_of_eq q) q⁻¹ = (idpo : b =[refl a] b) := by induction q;constructor definition cono.right_inv_eq' (q : b = b') : eq_concato q (pathover_idp_of_eq q⁻¹) = (idpo : b =[refl a] b) := by induction q;constructor definition cono.left_inv_eq (q : b = b') : concato_eq (pathover_idp_of_eq q⁻¹) q = (idpo : b' =[refl a] b') := by induction q;constructor definition cono.left_inv_eq' (q : b = b') : eq_concato q⁻¹ (pathover_idp_of_eq q) = (idpo : b' =[refl a] b') := by induction q;constructor definition change_path (q : p = p') (r : b =[p] b₂) : b =[p'] b₂ := by induction q;exact r definition change_path_equiv (f : Π{a}, B a ≃ B' a) (r : b =[p] b₂) : f b =[p] f b₂ := by induction r;constructor definition change_path_equiv' (f : Π{a}, B a ≃ B' a) (r : f b =[p] f b₂) : b =[p] b₂ := (left_inv f b)⁻¹ ⬝po change_path_equiv (λa, f⁻¹ᵉ) r ⬝op left_inv f b₂ end eq