-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer -- Ported from Coq HoTT import hott.equiv hott.funext_varieties hott.axioms.ua hott.axioms.funext import data.prod data.sigma data.unit open path function prod sigma truncation Equiv IsEquiv unit ua_type context universe variables l parameter [UA : ua_type.{l+1}] protected theorem ua_isequiv_postcompose {A B : Type.{l+1}} {C : Type} {w : A → B} {H0 : IsEquiv w} : IsEquiv (@compose C A B w) := let w' := Equiv.mk w H0 in let eqinv : A ≈ B := ((@IsEquiv.inv _ _ _ (@ua_type.inst UA A B)) w') in let eq' := equiv_path eqinv in IsEquiv.adjointify (@compose C A B w) (@compose C B A (IsEquiv.inv w)) (λ (x : C → B), have eqretr : eq' ≈ w', from (@retr _ _ (@equiv_path A B) (@ua_type.inst UA A B) w'), have invs_eq : (equiv_fun eq')⁻¹ ≈ (equiv_fun w')⁻¹, from inv_eq eq' w' eqretr, have eqfin : (equiv_fun eq') ∘ ((equiv_fun eq')⁻¹ ∘ x) ≈ x, from (λ p, (@path.rec_on Type.{l+1} A (λ B' p', Π (x' : C → B'), (equiv_fun (equiv_path p')) ∘ ((equiv_fun (equiv_path p'))⁻¹ ∘ x') ≈ x') B p (λ x', idp)) ) eqinv x, have eqfin' : (equiv_fun w') ∘ ((equiv_fun eq')⁻¹ ∘ x) ≈ x, from eqretr ▹ eqfin, have eqfin'' : (equiv_fun w') ∘ ((equiv_fun w')⁻¹ ∘ x) ≈ x, from invs_eq ▹ eqfin', eqfin'' ) (λ (x : C → A), have eqretr : eq' ≈ w', from (@retr _ _ (@equiv_path A B) ua_type.inst w'), have invs_eq : (equiv_fun eq')⁻¹ ≈ (equiv_fun w')⁻¹, from inv_eq eq' w' eqretr, have eqfin : (equiv_fun eq')⁻¹ ∘ ((equiv_fun eq') ∘ x) ≈ x, from (λ p, path.rec_on p idp) eqinv, have eqfin' : (equiv_fun eq')⁻¹ ∘ ((equiv_fun w') ∘ x) ≈ x, from eqretr ▹ eqfin, have eqfin'' : (equiv_fun w')⁻¹ ∘ ((equiv_fun w') ∘ x) ≈ x, from invs_eq ▹ eqfin', eqfin'' ) -- We are ready to prove functional extensionality, -- starting with the naive non-dependent version. protected definition diagonal [reducible] (B : Type) : Type := Σ xy : B × B, pr₁ xy ≈ pr₂ xy protected definition isequiv_src_compose {A B : Type} : @IsEquiv (A → diagonal B) (A → B) (compose (pr₁ ∘ dpr1)) := @ua_isequiv_postcompose _ _ _ (pr₁ ∘ dpr1) (IsEquiv.adjointify (pr₁ ∘ dpr1) (λ x, dpair (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, path.rec_on p idp)))) protected definition isequiv_tgt_compose {A B : Type} : @IsEquiv (A → diagonal B) (A → B) (compose (pr₂ ∘ dpr1)) := @ua_isequiv_postcompose _ _ _ (pr2 ∘ dpr1) (IsEquiv.adjointify (pr2 ∘ dpr1) (λ x, dpair (x , x) idp) (λx, idp) (λ x, sigma.rec_on x (λ xy, prod.rec_on xy (λ b c p, path.rec_on p idp)))) theorem ua_implies_funext_nondep {A : Type} {B : Type.{l+1}} : Π {f g : A → B}, f ∼ g → f ≈ g := (λ (f g : A → B) (p : f ∼ g), let d := λ (x : A), dpair (f x , f x) idp in let e := λ (x : A), dpair (f x , g x) (p x) in let precomp1 := compose (pr₁ ∘ dpr1) in have equiv1 [visible] : IsEquiv precomp1, from @isequiv_src_compose A B, have equiv2 [visible] : Π x y, IsEquiv (ap precomp1), from IsEquiv.ap_closed precomp1, have H' : Π (x y : A → diagonal B), pr₁ ∘ dpr1 ∘ x ≈ pr₁ ∘ dpr1 ∘ y → x ≈ y, from (λ x y, IsEquiv.inv (ap precomp1)), have eq2 : pr₁ ∘ dpr1 ∘ d ≈ pr₁ ∘ dpr1 ∘ e, from idp, have eq0 : d ≈ e, from H' d e eq2, have eq1 : (pr₂ ∘ dpr1) ∘ d ≈ (pr₂ ∘ dpr1) ∘ e, from ap _ eq0, eq1 ) end -- Now we use this to prove weak funext, which as we know -- implies (with dependent eta) also the strong dependent funext. universe variables l k theorem ua_implies_weak_funext [ua3 : ua_type.{k+1}] [ua4 : ua_type.{k+2}] : weak_funext.{l+1 k+1} := (λ (A : Type) (P : A → Type) allcontr, let U := (λ (x : A), unit) in have pequiv : Π (x : A), P x ≃ U x, from (λ x, @equiv_contr_unit(P x) (allcontr x)), have psim : Π (x : A), P x ≈ U x, from (λ x, @IsEquiv.inv _ _ equiv_path ua_type.inst (pequiv x)), have p : P ≈ U, from @ua_implies_funext_nondep _ A Type P U psim, have tU' : is_contr (A → unit), from is_contr.mk (λ x, ⋆) (λ f, @ua_implies_funext_nondep _ A unit (λ x, ⋆) f (λ x, unit.rec_on (f x) idp)), have tU : is_contr (Π x, U x), from tU', have tlast : is_contr (Πx, P x), from path.transport _ (p⁻¹) tU, tlast ) -- In the following we will proof function extensionality using the univalence axiom definition ua_implies_funext [instance] [ua ua2 : ua_type] : funext := weak_funext_implies_funext (@ua_implies_weak_funext ua ua2)