/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Soonho Kong */ #include #include #include "expr.h" #include "free_vars.h" #include "sets.h" #include "hash.h" #include "format.h" namespace lean { unsigned hash_args(unsigned size, expr const * args) { return hash(size, [&args](unsigned i){ return args[i].hash(); }); } static expr g_null; expr const & expr::null() { lean_assert(!g_null); return g_null; } expr_cell::expr_cell(expr_kind k, unsigned h): m_kind(static_cast(k)), m_flags(0), m_hash(h), m_rc(1) {} expr_var::expr_var(unsigned idx): expr_cell(expr_kind::Var, idx), m_vidx(idx) {} expr_const::expr_const(name const & n): expr_cell(expr_kind::Constant, n.hash()), m_name(n) {} expr_app::expr_app(unsigned num_args): expr_cell(expr_kind::App, 0), m_num_args(num_args) { } expr_app::~expr_app() { for (unsigned i = 0; i < m_num_args; i++) (m_args+i)->~expr(); } expr mk_app(unsigned n, expr const * as) { lean_assert(n > 1); unsigned new_n; unsigned n0 = 0; expr const & arg0 = as[0]; // Remark: we represent ((app a b) c) as (app a b c) if (is_app(arg0)) { n0 = num_args(arg0); new_n = n + n0 - 1; } else { new_n = n; } char * mem = new char[sizeof(expr_app) + new_n*sizeof(expr)]; expr r(new (mem) expr_app(new_n)); expr * m_args = to_app(r)->m_args; unsigned i = 0; unsigned j = 0; if (new_n != n) { for (; i < n0; i++) new (m_args+i) expr(arg(arg0, i)); j++; } for (; i < new_n; ++i, ++j) { lean_assert(j < n); new (m_args+i) expr(as[j]); } to_app(r)->m_hash = hash_args(new_n, m_args); return r; } expr_eq::expr_eq(expr const & lhs, expr const & rhs): expr_cell(expr_kind::Eq, ::lean::hash(lhs.hash(), rhs.hash())), m_lhs(lhs), m_rhs(rhs) { } expr_eq::~expr_eq() { } expr_abstraction::expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & b): expr_cell(k, ::lean::hash(t.hash(), b.hash())), m_name(n), m_domain(t), m_body(b) { } expr_lambda::expr_lambda(name const & n, expr const & t, expr const & e): expr_abstraction(expr_kind::Lambda, n, t, e) {} expr_pi::expr_pi(name const & n, expr const & t, expr const & e): expr_abstraction(expr_kind::Pi, n, t, e) {} expr_type::expr_type(level const & l): expr_cell(expr_kind::Type, l.hash()), m_level(l) { } expr_type::~expr_type() { } expr_let::expr_let(name const & n, expr const & v, expr const & b): expr_cell(expr_kind::Let, ::lean::hash(v.hash(), b.hash())), m_name(n), m_value(v), m_body(b) { } expr_let::~expr_let() { } expr_value::expr_value(value & v): expr_cell(expr_kind::Value, v.hash()), m_val(v) { m_val.inc_ref(); } expr_value::~expr_value() { m_val.dec_ref(); } void expr_cell::dealloc() { switch (kind()) { case expr_kind::Var: delete static_cast(this); break; case expr_kind::Constant: delete static_cast(this); break; case expr_kind::App: static_cast(this)->~expr_app(); delete[] reinterpret_cast(this); break; case expr_kind::Eq: delete static_cast(this); break; case expr_kind::Lambda: delete static_cast(this); break; case expr_kind::Pi: delete static_cast(this); break; case expr_kind::Type: delete static_cast(this); break; case expr_kind::Value: delete static_cast(this); break; case expr_kind::Let: delete static_cast(this); break; } } expr mk_type() { static thread_local expr r = mk_type(level()); return r; } class eq_fn { expr_cell_pair_set m_eq_visited; bool apply(expr const & a, expr const & b) { if (is_eqp(a, b)) return true; if (a.hash() != b.hash()) return false; if (a.kind() != b.kind()) return false; if (is_var(a)) return var_idx(a) == var_idx(b); if (is_shared(a) && is_shared(b)) { auto p = std::make_pair(a.raw(), b.raw()); if (m_eq_visited.find(p) != m_eq_visited.end()) return true; m_eq_visited.insert(p); } switch (a.kind()) { case expr_kind::Var: lean_unreachable(); return true; case expr_kind::Constant: return const_name(a) == const_name(b); case expr_kind::App: if (num_args(a) != num_args(b)) return false; for (unsigned i = 0; i < num_args(a); i++) if (!apply(arg(a, i), arg(b, i))) return false; return true; case expr_kind::Eq: return apply(eq_lhs(a), eq_lhs(b)) && apply(eq_rhs(a), eq_rhs(b)); case expr_kind::Lambda: case expr_kind::Pi: // Lambda and Pi // Remark: we ignore get_abs_name because we want alpha-equivalence return apply(abst_domain(a), abst_domain(b)) && apply(abst_body(a), abst_body(b)); case expr_kind::Type: return ty_level(a) == ty_level(b); case expr_kind::Value: return to_value(a) == to_value(b); case expr_kind::Let: return apply(let_value(a), let_value(b)) && apply(let_body(a), let_body(b)); } lean_unreachable(); return false; } public: bool operator()(expr const & a, expr const & b) { return apply(a, b); } }; bool operator==(expr const & a, expr const & b) { return eq_fn()(a, b); } bool is_arrow(expr const & t) { return is_pi(t) && !has_free_var(abst_body(t), 0); } expr copy(expr const & a) { switch (a.kind()) { case expr_kind::Var: return mk_var(var_idx(a)); case expr_kind::Constant: return mk_constant(const_name(a)); case expr_kind::Type: return mk_type(ty_level(a)); case expr_kind::Value: return mk_value(static_cast(a.raw())->m_val); case expr_kind::App: return mk_app(num_args(a), begin_args(a)); case expr_kind::Eq: return mk_eq(eq_lhs(a), eq_rhs(a)); case expr_kind::Lambda: return mk_lambda(abst_name(a), abst_domain(a), abst_body(a)); case expr_kind::Pi: return mk_pi(abst_name(a), abst_domain(a), abst_body(a)); case expr_kind::Let: return mk_let(let_name(a), let_value(a), let_body(a)); } lean_unreachable(); return expr(); } } void print(lean::expr const & a) { std::cout << a << "\n"; }