/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Extensional equality for functions, and a proof of function extensionality from quotients. -/ prelude import init.quot init.logic namespace function variables {A : Type} {B : A → Type} protected definition equiv (f₁ f₂ : Πx : A, B x) : Prop := ∀x, f₁ x = f₂ x namespace equiv_notation infix `~` := function.equiv end equiv_notation open equiv_notation protected theorem equiv.refl (f : Πx : A, B x) : f ~ f := take x, rfl protected theorem equiv.symm {f₁ f₂ : Πx: A, B x} : f₁ ~ f₂ → f₂ ~ f₁ := λH x, eq.symm (H x) protected theorem equiv.trans {f₁ f₂ f₃ : Πx: A, B x} : f₁ ~ f₂ → f₂ ~ f₃ → f₁ ~ f₃ := λH₁ H₂ x, eq.trans (H₁ x) (H₂ x) protected theorem equiv.is_equivalence (A : Type) (B : A → Type) : equivalence (@function.equiv A B) := mk_equivalence (@function.equiv A B) (@equiv.refl A B) (@equiv.symm A B) (@equiv.trans A B) end function section open quot variables {A : Type} {B : A → Type} private definition fun_setoid [instance] (A : Type) (B : A → Type) : setoid (Πx : A, B x) := setoid.mk (@function.equiv A B) (function.equiv.is_equivalence A B) private definition extfun (A : Type) (B : A → Type) : Type := quot (fun_setoid A B) private definition fun_to_extfun (f : Πx : A, B x) : extfun A B := ⟦f⟧ private definition extfun_app (f : extfun A B) : Πx : A, B x := take x, quot.lift_on f (λf : Πx : A, B x, f x) (λf₁ f₂ H, H x) theorem funext {f₁ f₂ : Πx : A, B x} : (∀x, f₁ x = f₂ x) → f₁ = f₂ := assume H, calc f₁ = extfun_app ⟦f₁⟧ : rfl ... = extfun_app ⟦f₂⟧ : {sound H} ... = f₂ : rfl end attribute funext [intro!] open function.equiv_notation definition subsingleton_pi [instance] {A : Type} {B : A → Type} (H : ∀ a, subsingleton (B a)) : subsingleton (Π a, B a) := subsingleton.intro (take f₁ f₂, have eqv : f₁ ~ f₂, from take a, subsingleton.elim (f₁ a) (f₂ a), funext eqv)