/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Soonho Kong */ #include #include #include #include #include "util/hash.h" #include "util/buffer.h" #include "util/object_serializer.h" #include "kernel/expr.h" // #include "kernel/free_vars.h" // #include "kernel/expr_eq.h" // #include "kernel/metavar.h" // #include "kernel/max_sharing.h" namespace lean { #if 0 static expr g_dummy(mk_var(0)); expr::expr():expr(g_dummy) {} // Local context entries local_entry::local_entry(unsigned s, unsigned n):m_kind(local_entry_kind::Lift), m_s(s), m_n(n) {} local_entry::local_entry(unsigned s, expr const & v):m_kind(local_entry_kind::Inst), m_s(s), m_v(v) {} local_entry::~local_entry() {} bool local_entry::operator==(local_entry const & e) const { if (m_kind != e.m_kind || m_s != e.m_s) return false; if (is_inst()) return m_v == e.m_v; else return m_n == e.m_n; } unsigned hash_args(unsigned size, expr const * args) { return hash(size, [&args](unsigned i){ return args[i].hash(); }); } expr_cell::expr_cell(expr_kind k, unsigned h, bool has_mv): m_kind(static_cast(k)), m_flags(has_mv ? 4 : 0), m_hash(h), m_rc(0) { // m_hash_alloc does not need to be a unique identifier. // We want diverse hash codes such that given expr_cell * c1 and expr_cell * c2, // if c1 != c2, then there is high probability c1->m_hash_alloc != c2->m_hash_alloc. // Remark: using pointer address as a hash code is not a good idea. // - each execution run will behave differently. // - the hash is not diverse enough static LEAN_THREAD_LOCAL unsigned g_hash_alloc_counter = 0; m_hash_alloc = g_hash_alloc_counter; g_hash_alloc_counter++; } void expr_cell::dec_ref(expr & e, buffer & todelete) { if (e.m_ptr) { expr_cell * c = e.steal_ptr(); lean_assert(!(e.m_ptr)); if (c->dec_ref_core()) todelete.push_back(c); } } void expr_cell::dec_ref(optional & c, buffer & todelete) { if (c) dec_ref(*c, todelete); } optional expr_cell::is_arrow() const { // it is stored in bits 3-4 unsigned r = (m_flags & (8+16)) >> 3; if (r == 0) { return optional(); } else if (r == 1) { return optional(true); } else { lean_assert(r == 2); return optional(false); } } void expr_cell::set_is_arrow(bool flag) { unsigned mask = flag ? 8 : 16; m_flags |= mask; lean_assert(is_arrow() && *is_arrow() == flag); } // Expr variables expr_var::expr_var(unsigned idx): expr_cell(expr_kind::Var, idx, false), m_vidx(idx) {} // Expr constants expr_const::expr_const(name const & n, optional const & t): expr_cell(expr_kind::Constant, n.hash(), t && t->has_metavar()), m_name(n), m_type(t) {} void expr_const::dealloc(buffer & todelete) { dec_ref(m_type, todelete); delete(this); } // Expr heterogeneous equality expr_heq::expr_heq(expr const & lhs, expr const & rhs): expr_cell(expr_kind::HEq, ::lean::hash(lhs.hash(), rhs.hash()), lhs.has_metavar() || rhs.has_metavar()), m_lhs(lhs), m_rhs(rhs), m_depth(std::max(get_depth(lhs), get_depth(rhs))+1) { } void expr_heq::dealloc(buffer & todelete) { dec_ref(m_lhs, todelete); dec_ref(m_rhs, todelete); delete(this); } // Expr dependent pairs expr_dep_pair::expr_dep_pair(expr const & f, expr const & s, expr const & t): expr_cell(expr_kind::Pair, ::lean::hash(f.hash(), s.hash()), f.has_metavar() || s.has_metavar() || t.has_metavar()), m_first(f), m_second(s), m_type(t), m_depth(std::max(get_depth(f), get_depth(s))+1) { } void expr_dep_pair::dealloc(buffer & todelete) { dec_ref(m_first, todelete); dec_ref(m_second, todelete); dec_ref(m_type, todelete); delete(this); } // Expr pair projection expr_proj::expr_proj(bool f, expr const & e): expr_cell(expr_kind::Proj, ::lean::hash(17, e.hash()), e.has_metavar()), m_first(f), m_depth(get_depth(e)+1), m_expr(e) {} void expr_proj::dealloc(buffer & todelete) { dec_ref(m_expr, todelete); delete(this); } // Expr applications expr_app::expr_app(unsigned num_args, bool has_mv): expr_cell(expr_kind::App, 0, has_mv), m_num_args(num_args) { } void expr_app::dealloc(buffer & todelete) { unsigned i = m_num_args; while (i > 0) { --i; dec_ref(m_args[i], todelete); } delete[] reinterpret_cast(this); } expr mk_app(unsigned n, expr const * as) { lean_assert(n > 1); unsigned new_n; unsigned n0 = 0; expr const & arg0 = as[0]; bool has_mv = std::any_of(as, as + n, [](expr const & c) { return c.has_metavar(); }); // Remark: we represent ((app a b) c) as (app a b c) if (is_app(arg0)) { n0 = num_args(arg0); new_n = n + n0 - 1; } else { new_n = n; } char * mem = new char[sizeof(expr_app) + new_n*sizeof(expr)]; expr r(new (mem) expr_app(new_n, has_mv)); expr * m_args = to_app(r)->m_args; unsigned i = 0; unsigned j = 0; unsigned depth = 0; if (new_n != n) { for (; i < n0; ++i) { new (m_args+i) expr(arg(arg0, i)); depth = std::max(depth, get_depth(m_args[i])); } j++; } for (; i < new_n; ++i, ++j) { lean_assert(j < n); new (m_args+i) expr(as[j]); depth = std::max(depth, get_depth(m_args[i])); } to_app(r)->m_hash = hash_args(new_n, m_args); to_app(r)->m_depth = depth + 1; return r; } // Expr abstractions (and subclasses: Lambda, Pi and Sigma) expr_abstraction::expr_abstraction(expr_kind k, name const & n, expr const & t, expr const & b): expr_cell(k, ::lean::hash(t.hash(), b.hash()), t.has_metavar() || b.has_metavar()), m_name(n), m_domain(t), m_body(b) { m_depth = 1 + std::max(get_depth(m_domain), get_depth(m_body)); } void expr_abstraction::dealloc(buffer & todelete) { dec_ref(m_body, todelete); dec_ref(m_domain, todelete); delete(this); } expr_lambda::expr_lambda(name const & n, expr const & t, expr const & e):expr_abstraction(expr_kind::Lambda, n, t, e) {} expr_pi::expr_pi(name const & n, expr const & t, expr const & e):expr_abstraction(expr_kind::Pi, n, t, e) {} expr_sigma::expr_sigma(name const & n, expr const & t, expr const & e):expr_abstraction(expr_kind::Sigma, n, t, e) {} // Expr Type expr_type::expr_type(level const & l): expr_cell(expr_kind::Type, l.hash(), false), m_level(l) { } expr_type::~expr_type() {} // Expr Let expr_let::expr_let(name const & n, optional const & t, expr const & v, expr const & b): expr_cell(expr_kind::Let, ::lean::hash(v.hash(), b.hash()), v.has_metavar() || b.has_metavar() || (t && t->has_metavar())), m_name(n), m_type(t), m_value(v), m_body(b) { unsigned depth = std::max(get_depth(m_value), get_depth(m_body)); if (m_type) depth = std::max(depth, get_depth(*m_type)); m_depth = 1 + depth; } void expr_let::dealloc(buffer & todelete) { dec_ref(m_body, todelete); dec_ref(m_value, todelete); dec_ref(m_type, todelete); delete(this); } expr_let::~expr_let() {} // Expr Semantic attachment name value::get_unicode_name() const { return get_name(); } optional value::normalize(unsigned, expr const *) const { return none_expr(); } void value::display(std::ostream & out) const { out << get_name(); } bool value::operator==(value const & other) const { return typeid(*this) == typeid(other); } bool value::operator<(value const & other) const { if (get_name() == other.get_name()) return lt(other); else return get_name() < other.get_name(); } format value::pp() const { return format(get_name()); } format value::pp(bool unicode, bool) const { return unicode ? format(get_unicode_name()) : pp(); } unsigned value::hash() const { return get_name().hash(); } int value::push_lua(lua_State *) const { return 0; } // NOLINT expr_value::expr_value(value & v): expr_cell(expr_kind::Value, v.hash(), false), m_val(v) { m_val.inc_ref(); } expr_value::~expr_value() { m_val.dec_ref(); } typedef std::unordered_map value_readers; static std::unique_ptr g_value_readers; value_readers & get_value_readers() { if (!g_value_readers) g_value_readers.reset(new value_readers()); return *(g_value_readers.get()); } void value::register_deserializer(std::string const & k, value::reader rd) { value_readers & readers = get_value_readers(); lean_assert(readers.find(k) == readers.end()); readers[k] = rd; } static expr read_value(deserializer & d) { auto k = d.read_string(); value_readers & readers = get_value_readers(); auto it = readers.find(k); lean_assert(it != readers.end()); return it->second(d); } // Expr Metavariable expr_metavar::expr_metavar(name const & n, local_context const & lctx): expr_cell(expr_kind::MetaVar, n.hash(), true), m_name(n), m_lctx(lctx) {} expr_metavar::~expr_metavar() {} void expr_cell::dealloc() { try { buffer todo; todo.push_back(this); while (!todo.empty()) { expr_cell * it = todo.back(); todo.pop_back(); lean_assert(it->get_rc() == 0); switch (it->kind()) { case expr_kind::Var: delete static_cast(it); break; case expr_kind::Value: delete static_cast(it); break; case expr_kind::MetaVar: delete static_cast(it); break; case expr_kind::Type: delete static_cast(it); break; case expr_kind::Constant: static_cast(it)->dealloc(todo); break; case expr_kind::Pair: static_cast(it)->dealloc(todo); break; case expr_kind::Proj: static_cast(it)->dealloc(todo); break; case expr_kind::App: static_cast(it)->dealloc(todo); break; case expr_kind::Lambda: static_cast(it)->dealloc(todo); break; case expr_kind::Pi: static_cast(it)->dealloc(todo); break; case expr_kind::Sigma: static_cast(it)->dealloc(todo); break; case expr_kind::HEq: static_cast(it)->dealloc(todo); break; case expr_kind::Let: static_cast(it)->dealloc(todo); break; } } } catch (std::bad_alloc&) { // We need this catch, because push_back may fail when expanding the buffer. // In this case, we avoid the crash, and "accept" the memory leak. } } expr mk_type() { static LEAN_THREAD_LOCAL expr r = mk_type(level()); return r; } bool operator==(expr const & a, expr const & b) { return expr_eq_fn<>()(a, b); } bool is_arrow(expr const & t) { optional r = t.raw()->is_arrow(); if (r) { return *r; } else { bool res = is_pi(t) && !has_free_var(abst_body(t), 0); t.raw()->set_is_arrow(res); return res; } } bool is_cartesian(expr const & t) { return is_sigma(t) && !has_free_var(abst_body(t), 0); } unsigned get_depth(expr const & e) { switch (e.kind()) { case expr_kind::Var: case expr_kind::Constant: case expr_kind::Type: case expr_kind::Value: case expr_kind::MetaVar: return 1; case expr_kind::HEq: return to_heq(e)->m_depth; case expr_kind::Pair: return to_pair(e)->m_depth; case expr_kind::Proj: return to_proj(e)->m_depth; case expr_kind::App: return to_app(e)->m_depth; case expr_kind::Pi: case expr_kind::Lambda: case expr_kind::Sigma: return to_abstraction(e)->m_depth; case expr_kind::Let: return to_let(e)->m_depth; } lean_unreachable(); // LCOV_EXCL_LINE } expr copy(expr const & a) { switch (a.kind()) { case expr_kind::Var: return mk_var(var_idx(a)); case expr_kind::Constant: return mk_constant(const_name(a), const_type(a)); case expr_kind::Type: return mk_type(ty_level(a)); case expr_kind::Value: return mk_value(static_cast(a.raw())->m_val); case expr_kind::Pair: return mk_pair(pair_first(a), pair_second(a), pair_type(a)); case expr_kind::Proj: return mk_proj(proj_first(a), proj_arg(a)); case expr_kind::App: return mk_app(num_args(a), begin_args(a)); case expr_kind::Lambda: return mk_lambda(abst_name(a), abst_domain(a), abst_body(a)); case expr_kind::Pi: return mk_pi(abst_name(a), abst_domain(a), abst_body(a)); case expr_kind::Sigma: return mk_sigma(abst_name(a), abst_domain(a), abst_body(a)); case expr_kind::Let: return mk_let(let_name(a), let_type(a), let_value(a), let_body(a)); case expr_kind::HEq: return mk_heq(heq_lhs(a), heq_rhs(a)); case expr_kind::MetaVar: return mk_metavar(metavar_name(a), metavar_lctx(a)); } lean_unreachable(); // LCOV_EXCL_LINE } serializer & operator<<(serializer & s, local_context const & lctx) { s << length(lctx); for (auto const & e : lctx) { if (e.is_lift()) { s << true << e.s() << e.n(); } else { s << false << e.s() << e.v(); } } return s; } local_context read_local_context(deserializer & d) { unsigned num = d.read_unsigned(); buffer entries; for (unsigned i = 0; i < num; i++) { if (d.read_bool()) { unsigned s, n; d >> s >> n; entries.push_back(mk_lift(s, n)); } else { unsigned s; expr v; d >> s >> v; entries.push_back(mk_inst(s, v)); } } return to_list(entries.begin(), entries.end()); } // To save space, we pack the number of arguments in small applications in the kind byte. // The extra kinds start at g_first_app_size_kind. This value should be bigger than the // real kinds. Moreover g_first_app_size_kind + g_small_app_num_args should fit in a byte. constexpr char g_first_app_size_kind = 32; constexpr char g_small_app_num_args = 32; constexpr bool is_small(expr_kind k) { return 0 <= static_cast(k) && static_cast(k) < g_first_app_size_kind; } static_assert(is_small(expr_kind::Var) && is_small(expr_kind::Constant) && is_small(expr_kind::Value) && is_small(expr_kind::App) && is_small(expr_kind::Pair) && is_small(expr_kind::Proj) && is_small(expr_kind::Lambda) && is_small(expr_kind::Pi) && is_small(expr_kind::Sigma) && is_small(expr_kind::Type) && is_small(expr_kind::Let) && is_small(expr_kind::HEq) && is_small(expr_kind::MetaVar), "expr_kind is too big"); class expr_serializer : public object_serializer { typedef object_serializer super; max_sharing_fn m_max_sharing_fn; void write_core(optional const & a) { serializer & s = get_owner(); if (a) { s << true; write_core(*a); } else { s << false; } } void write_core(expr const & a) { auto k = a.kind(); char kc; if (k == expr_kind::App && num_args(a) < g_small_app_num_args) { kc = static_cast(g_first_app_size_kind + num_args(a)); } else { kc = static_cast(k); } super::write_core(a, kc, [&]() { serializer & s = get_owner(); if (kc >= static_cast(g_first_app_size_kind)) { // compressed application for (unsigned i = 0; i < num_args(a); i++) write_core(arg(a, i)); return; } switch (k) { case expr_kind::Var: s << var_idx(a); break; case expr_kind::Constant: s << const_name(a); write_core(const_type(a)); break; case expr_kind::Type: s << ty_level(a); break; case expr_kind::Value: to_value(a).write(s); break; case expr_kind::Pair: write_core(pair_first(a)); write_core(pair_second(a)); write_core(pair_type(a)); break; case expr_kind::Proj: s << proj_first(a); write_core(proj_arg(a)); break; case expr_kind::HEq: write_core(heq_lhs(a)); write_core(heq_rhs(a)); break; case expr_kind::App: s << num_args(a); for (unsigned i = 0; i < num_args(a); i++) write_core(arg(a, i)); break; case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Sigma: s << abst_name(a); write_core(abst_domain(a)); write_core(abst_body(a)); break; case expr_kind::Let: s << let_name(a); write_core(let_type(a)); write_core(let_value(a)); write_core(let_body(a)); break; case expr_kind::MetaVar: s << metavar_name(a) << metavar_lctx(a); break; } }); } public: void write(expr const & a) { write_core(m_max_sharing_fn(a)); } }; class expr_deserializer : public object_deserializer { typedef object_deserializer super; public: optional read_opt() { deserializer & d = get_owner(); if (d.read_bool()) { return some_expr(read()); } else { return none_expr(); } } expr read() { return super::read_core([&](char c) { deserializer & d = get_owner(); if (c >= g_first_app_size_kind) { // compressed application unsigned num = c - g_first_app_size_kind; buffer args; for (unsigned i = 0; i < num; i++) args.push_back(read()); return mk_app(args); } auto k = static_cast(c); switch (k) { case expr_kind::Var: return mk_var(d.read_unsigned()); case expr_kind::Constant: { auto n = read_name(d); return mk_constant(n, read_opt()); } case expr_kind::Type: return mk_type(read_level(d)); break; case expr_kind::Value: return read_value(d); case expr_kind::Pair: { expr f = read(); expr s = read(); return mk_pair(f, s, read()); } case expr_kind::HEq: { expr lhs = read(); return mk_heq(lhs, read()); } case expr_kind::Proj: { bool f = d.read_bool(); return mk_proj(f, read()); } case expr_kind::App: { buffer args; unsigned num = d.read_unsigned(); for (unsigned i = 0; i < num; i++) args.push_back(read()); return mk_app(args); } case expr_kind::Lambda: { name n = read_name(d); expr d = read(); return mk_lambda(n, d, read()); } case expr_kind::Pi: { name n = read_name(d); expr d = read(); return mk_pi(n, d, read()); } case expr_kind::Sigma: { name n = read_name(d); expr d = read(); return mk_sigma(n, d, read()); } case expr_kind::Let: { name n = read_name(d); optional t = read_opt(); expr v = read(); return mk_let(n, t, v, read()); } case expr_kind::MetaVar: { name n = read_name(d); return mk_metavar(n, read_local_context(d)); }} throw_corrupted_file(); // LCOV_EXCL_LINE }); } }; struct expr_sd { unsigned m_s_extid; unsigned m_d_extid; expr_sd() { m_s_extid = serializer::register_extension([](){ return std::unique_ptr(new expr_serializer()); }); m_d_extid = deserializer::register_extension([](){ return std::unique_ptr(new expr_deserializer()); }); } }; static expr_sd g_expr_sd; serializer & operator<<(serializer & s, expr const & n) { s.get_extension(g_expr_sd.m_s_extid).write(n); return s; } expr read_expr(deserializer & d) { return d.get_extension(g_expr_sd.m_d_extid).read(); } #endif }