/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: init.path Author: Floris van Doorn Theorems about functions with multiple arguments -/ variables {A U V W X Y Z : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {E : Πa b c, D a b c → Type} variables {a a' : A} {u u' : U} {v v' : V} {w w' : W} {x x' x'' : X} {y y' : Y} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} {d : D a b c} {d' : D a' b' c'} namespace eq /- Naming convention: The theorem which states how to construct an path between two function applications is api₀i₁...iₙ. Here i₀, ... iₙ are digits, n is the arity of the function(s), and iⱼ specifies the dimension of the path between the jᵗʰ argument (i₀ specifies the dimension of the path between the functions). A value iⱼ ≡ 0 means that the jᵗʰ arguments are definitionally equal The functions are non-dependent, except when the theorem name contains trailing zeroes (where the function is dependent only in the arguments where it doesn't result in any transports in the theorem statement). For the fully-dependent versions (except that the conclusion doesn't contain a transport) we write apDi₀i₁...iₙ. For versions where only some arguments depend on some other arguments, or for versions with transport in the conclusion (like apD), we don't have a consistent naming scheme (yet). We don't prove each theorem systematically, but prove only the ones which we actually need. -/ definition homotopy2 [reducible] (f g : Πa b, C a b) : Type := Πa b, f a b = g a b definition homotopy3 [reducible] (f g : Πa b c, D a b c) : Type := Πa b c, f a b c = g a b c definition homotopy4 [reducible] (f g : Πa b c d, E a b c d) : Type := Πa b c d, f a b c d = g a b c d notation f `∼2`:50 g := homotopy2 f g notation f `∼3`:50 g := homotopy3 f g definition ap011 (f : U → V → W) (Hu : u = u') (Hv : v = v') : f u v = f u' v' := eq.rec_on Hu (ap (f u) Hv) definition ap0111 (f : U → V → W → X) (Hu : u = u') (Hv : v = v') (Hw : w = w') : f u v w = f u' v' w' := eq.rec_on Hu (ap011 (f u) Hv Hw) definition ap01111 (f : U → V → W → X → Y) (Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x') : f u v w x = f u' v' w' x' := eq.rec_on Hu (ap0111 (f u) Hv Hw Hx) definition ap010 (f : X → Πa, B a) (Hx : x = x') : f x ∼ f x' := λa, eq.rec_on Hx idp definition ap0100 (f : X → Πa b, C a b) (Hx : x = x') : f x ∼2 f x' := λa b, eq.rec_on Hx idp definition ap01000 (f : X → Πa b c, D a b c) (Hx : x = x') : f x ∼3 f x' := λa b c, eq.rec_on Hx idp definition apD011 (f : Πa, B a → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b') : f a b = f a' b' := eq.rec_on Hb (eq.rec_on Ha idp) definition apD0111 (f : Πa b, C a b → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b') (Hc : apD011 C Ha Hb ▹ c = c') : f a b c = f a' b' c' := eq.rec_on Hc (eq.rec_on Hb (eq.rec_on Ha idp)) definition apD01111 (f : Πa b c, D a b c → Z) (Ha : a = a') (Hb : (Ha ▹ b) = b') (Hc : apD011 C Ha Hb ▹ c = c') (Hd : apD0111 D Ha Hb Hc ▹ d = d') : f a b c d = f a' b' c' d' := eq.rec_on Hd (eq.rec_on Hc (eq.rec_on Hb (eq.rec_on Ha idp))) definition apD100 {f g : Πa b, C a b} (p : f = g) : f ∼2 g := λa b, apD10 (apD10 p a) b definition apD1000 {f g : Πa b c, D a b c} (p : f = g) : f ∼3 g := λa b c, apD100 (apD10 p a) b c /- some properties of these variants of ap -/ -- we only prove what is needed somewhere definition ap010_con (f : X → Πa, B a) (p : x = x') (q : x' = x'') : ap010 f (p ⬝ q) a = ap010 f p a ⬝ ap010 f q a := eq.rec_on q (eq.rec_on p idp) definition ap010_ap (f : X → Πa, B a) (g : Y → X) (p : y = y') : ap010 f (ap g p) a = ap010 (λy, f (g y)) p a := eq.rec_on p idp /- the following theorems are function extentionality for functions with multiple arguments -/ definition eq_of_homotopy2 {f g : Πa b, C a b} (H : f ∼2 g) : f = g := eq_of_homotopy (λa, eq_of_homotopy (H a)) definition eq_of_homotopy3 {f g : Πa b c, D a b c} (H : f ∼3 g) : f = g := eq_of_homotopy (λa, eq_of_homotopy2 (H a)) definition eq_of_homotopy2_id (f : Πa b, C a b) : eq_of_homotopy2 (λa b, idpath (f a b)) = idpath f := begin apply concat, {apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy_id}, apply eq_of_homotopy_id end definition eq_of_homotopy3_id (f : Πa b c, D a b c) : eq_of_homotopy3 (λa b c, idpath (f a b c)) = idpath f := begin apply concat, {apply (ap (λx, eq_of_homotopy x)), apply eq_of_homotopy, intro a, apply eq_of_homotopy2_id}, apply eq_of_homotopy_id end end eq open eq is_equiv namespace funext definition is_equiv_apD100 [instance] (f g : Πa b, C a b) : is_equiv (@apD100 A B C f g) := adjointify _ eq_of_homotopy2 begin intro H, esimp {apD100,eq_of_homotopy2, function.compose}, apply eq_of_homotopy, intro a, apply concat, apply (ap (λx, @apD10 _ (λb : B a, _) _ _ (x a))), apply (retr apD10), --TODO: remove implicit argument after #469 is closed apply (retr apD10) end begin intro p, cases p, apply eq_of_homotopy2_id end definition is_equiv_apD1000 [instance] (f g : Πa b c, D a b c) : is_equiv (@apD1000 A B C D f g) := adjointify _ eq_of_homotopy3 begin intro H, apply eq_of_homotopy, intro a, apply concat, {apply (ap (λx, @apD100 _ _ (λ(b : B a)(c : C a b), _) _ _ (x a))), apply (retr apD10)}, --TODO: remove implicit argument after #469 is closed apply (@retr _ _ apD100 !is_equiv_apD100) --is explicit argument needed here? end begin intro p, cases p, apply eq_of_homotopy3_id end end funext namespace eq open funext local attribute funext.is_equiv_apD100 [instance] protected definition homotopy2.rec_on {f g : Πa b, C a b} {P : (f ∼2 g) → Type} (p : f ∼2 g) (H : Π(q : f = g), P (apD100 q)) : P p := retr apD100 p ▹ H (eq_of_homotopy2 p) protected definition homotopy3.rec_on {f g : Πa b c, D a b c} {P : (f ∼3 g) → Type} (p : f ∼3 g) (H : Π(q : f = g), P (apD1000 q)) : P p := retr apD1000 p ▹ H (eq_of_homotopy3 p) definition apD10_ap (f : X → Πa, B a) (p : x = x') : apD10 (ap f p) = ap010 f p := eq.rec_on p idp definition eq_of_homotopy_ap010 (f : X → Πa, B a) (p : x = x') : eq_of_homotopy (ap010 f p) = ap f p := inv_eq_of_eq !apD10_ap⁻¹ definition ap_eq_ap_of_homotopy {f : X → Πa, B a} {p q : x = x'} (H : ap010 f p ∼ ap010 f q) : ap f p = ap f q := calc ap f p = eq_of_homotopy (ap010 f p) : eq_of_homotopy_ap010 ... = eq_of_homotopy (ap010 f q) : eq_of_homotopy H ... = ap f q : eq_of_homotopy_ap010 end eq