-- category abbreviation Prop := Type.{0} variable eq {A : Type} : A → A → Prop infix `=`:50 := eq variable ob : Type.{1} variable mor : ob → ob → Type.{1} inductive category : Type := mk : Π (id : Π (A : ob), mor A A), (Π (A B : ob) (f : mor A A), id A = f) → category abbreviation id (Cat : category) := category.rec (λ id idl, id) Cat variable Cat : category set_option unifier.computation true print "-----------------" theorem id_left (A : ob) (f : mor A A) : @eq (mor A A) (id Cat A) f := @category.rec (λ (C : category), Π (A B : ob) (f : mor A A), @eq (mor A A) (id C A) f) (λ id idl, idl) Cat A A f