import logic inductive vector (T : Type) : nat → Type := nil {} : vector T nat.zero, cons : T → ∀{n}, vector T n → vector T (nat.succ n) #projections or #projections and #projections eq.refl #projections eq #projections vector inductive point := mk : nat → nat → point #projections point :: x y z #projections point :: x y #projections point :: x y inductive funny : nat → Type := mk : Π (a : nat), funny a #projections funny