-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad import logic.core.inhabited logic.core.eq open inhabited eq_ops inductive sigma {A : Type} (B : A → Type) : Type := dpair : Πx : A, B x → sigma B notation `Σ` binders `,` r:(scoped P, sigma P) := r namespace sigma section parameters {A : Type} {B : A → Type} definition dpr1 (p : Σ x, B x) : A := rec (λ a b, a) p definition dpr2 (p : Σ x, B x) : B (dpr1 p) := rec (λ a b, b) p theorem dpr1_dpair (a : A) (b : B a) : dpr1 (dpair a b) = a := rfl theorem dpr2_dpair (a : A) (b : B a) : dpr2 (dpair a b) = b := rfl protected theorem destruct {P : sigma B → Prop} (p : sigma B) (H : ∀a b, P (dpair a b)) : P p := rec H p theorem dpair_ext (p : sigma B) : dpair (dpr1 p) (dpr2 p) = p := destruct p (take a b, rfl) theorem dpair_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) : dpair a₁ b₁ = dpair a₂ b₂ := congr_arg2 dpair H₁ H₂ protected theorem equal {p₁ p₂ : Σx : A, B x} : ∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : eq.rec_on H₁ (dpr2 p₁) = dpr2 p₂), p₁ = p₂ := destruct p₁ (take a₁ b₁, destruct p₂ (take a₂ b₂ H₁ H₂, dpair_eq H₁ H₂)) protected theorem is_inhabited [instance] (H₁ : inhabited A) (H₂ : inhabited (B (default A))) : inhabited (sigma B) := inhabited.destruct H₁ (λa, inhabited.destruct H₂ (λb, inhabited.mk (dpair (default A) b))) end section trip_quad parameters {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} definition dtrip (a : A) (b : B a) (c : C a b) := dpair a (dpair b c) definition dquad (a : A) (b : B a) (c : C a b) (d : D a b c) := dpair a (dpair b (dpair c d)) definition dpr1' (x : Σ a, B a) := dpr1 x definition dpr2' (x : Σ a b, C a b) := dpr1 (dpr2 x) definition dpr3 (x : Σ a b, C a b) := dpr2 (dpr2 x) definition dpr3' (x : Σ a b c, D a b c) := dpr1 (dpr2 (dpr2 x)) definition dpr4 (x : Σ a b c, D a b c) := dpr2 (dpr2 (dpr2 x)) -- theorem dtrip_eq {a₁ a₂ : A} {b₁ : B a₁} {b₂ : B a₂} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} -- (H₁ : a₁ = a₂) (H₂ : eq.rec_on H₁ b₁ = b₂) (H₃ : eq.rec_on (congr_arg2 C H₁ H₂) c₁ = c₂) : -- dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ := -- eq.rec_on H₁ -- (λ (b₂ : B a₁) (c₂ : C a₁ b₂) (H₁ : a₁ = a₁) (H₂ : eq.rec_on H₁ b₁ = b₂) -- (x : (eq (eq.rec_on (congr_arg2 C H₁ H₂) c₁) c₂)), sorry -- -- have H : dpair b₁ c₁ = dpair b₂ c₂, from -- -- dpair_eq H₂ (eq.subst (eq.rec_on_id H₁ c₁) H₃), -- -- eq.subst H rfl -- ) -- b₂ c₂ H₁ H₂ H₃ end trip_quad theorem dtrip_eq2 {A B : Type} {C : A → B → Type} {a₁ a₂ : A} {b₁ b₂ : B} {c₁ : C a₁ b₁} {c₂ : C a₂ b₂} (H₁ : a₁ = a₂) (H₂ : b₁ = b₂) (H₃ : eq.rec_on H₂ (eq.rec_on H₁ c₁) = c₂) : dtrip a₁ b₁ c₁ = dtrip a₂ b₂ c₂ := eq.rec_on H₁ (λ (b₂ : B) (c₂ : C a₁ b₂) (H₁ : a₁ = a₁) (H₂ : b₁ = b₂) (H₃ : eq.rec_on H₂ (eq.rec_on H₁ c₁) = c₂), have H : dpair b₁ c₁ = dpair b₂ c₂, from dpair_eq H₂ (eq.subst (eq.rec_on_id H₁ c₁) H₃), eq.subst H rfl ) b₂ c₂ H₁ H₂ H₃ theorem trip.equal2 {A B : Type} {C : A → B → Type} {p₁ p₂ : Σa b, C a b} : ∀(H₁ : dpr1 p₁ = dpr1 p₂) (H₂ : dpr2' p₁ = dpr2' p₂) (H₃ : eq.rec_on H₂ (eq.rec_on H₁ (dpr3 p₁)) = dpr3 p₂), p₁ = p₂ := destruct p₁ (take a₁ q₁, destruct q₁ (take b₁ c₁, destruct p₂ (take a₂ q₂, destruct q₂ (take b₂ c₂ H₁ H₂ H₃, dtrip_eq2 H₁ H₂ H₃)))) end sigma