---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.classes.inhabited logic.core.cast open inhabited -- Pi extensionality axiom piext {A : Type} {B B' : A → Type} {H : inhabited (Π x, B x)} : (Π x, B x) = (Π x, B' x) → B = B' theorem cast_app {A : Type} {B B' : A → Type} (H : (Π x, B x) = (Π x, B' x)) (f : Π x, B x) (a : A) : cast H f a == f a := have Hi [fact] : inhabited (Π x, B x), from inhabited_mk f, have Hb : B = B', from piext H, cast_app' Hb f a theorem hcongr_fun {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A) (H : f == f') : f a == f' a := have Hi [fact] : inhabited (Π x, B x), from inhabited_mk f, have Hb : B = B', from piext (type_eq H), hcongr_fun' a H Hb theorem hcongr {A A' : Type} {B : A → Type} {B' : A' → Type} {f : Π x, B x} {f' : Π x, B' x} {a : A} {a' : A'} (Hff' : f == f') (Haa' : a == a') : f a == f' a' := have H1 : ∀ (B B' : A → Type) (f : Π x, B x) (f' : Π x, B' x), f == f' → f a == f' a, from take B B' f f' e, hcongr_fun a e, have H2 : ∀ (B : A → Type) (B' : A' → Type) (f : Π x, B x) (f' : Π x, B' x), f == f' → f a == f' a', from hsubst Haa' H1, H2 B B' f f' Hff'