Set: pp::colors Set: pp::unicode Imported 'macros' Using: Nat Assumed: Induction Proved: Comm1 Proved: Comm2 theorem Comm2 : ∀ n m : ℕ, n + m = m + n := λ n : ℕ, Induction (λ x : ℕ, n + x = x + n) (Nat::add_zeror n ⋈ symm (Nat::add_zerol n)) (λ (m : ℕ) (iH : n + m = m + n), Nat::add_succr n m ⋈ subst (refl (n + m + 1)) iH ⋈ symm (Nat::add_succl m n))