Set: pp::colors Set: pp::unicode Assumed: N Assumed: h Proved: CongrH Set: lean::pp::implicit Theorem CongrH {a1 a2 b1 b2 : N} (H1 : eq::explicit N a1 b1) (H2 : eq::explicit N a2 b2) : eq::explicit N (h a1 a2) (h b1 b2) := Congr::explicit N (λ x : N, N) (h a1) (h b1) a2 b2 (Congr::explicit N (λ x : N, N → N) h h a1 b1 (Refl::explicit (N → N → N) h) H1) H2 Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := CongrH H1 H2 Set: lean::pp::implicit Theorem CongrH {a1 a2 b1 b2 : N} (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := Congr (Congr (Refl h) H1) H2 Theorem CongrH::explicit (a1 a2 b1 b2 : N) (H1 : a1 = b1) (H2 : a2 = b2) : (h a1 a2) = (h b1 b2) := CongrH H1 H2 Proved: Example1 Set: lean::pp::implicit Theorem Example1 (a b c d : N) (H : eq::explicit N a b ∧ eq::explicit N b c ∨ eq::explicit N a d ∧ eq::explicit N d c) : eq::explicit N (h a b) (h c b) := DisjCases::explicit (eq::explicit N a b ∧ eq::explicit N b c) (eq::explicit N a d ∧ eq::explicit N d c) ((h a b) == (h c b)) H (λ H1 : eq::explicit N a b ∧ eq::explicit N b c, CongrH::explicit a b c b (Trans::explicit N a b c (Conjunct1::explicit (eq::explicit N a b) (eq::explicit N b c) H1) (Conjunct2::explicit (eq::explicit N a b) (eq::explicit N b c) H1)) (Refl::explicit N b)) (λ H1 : eq::explicit N a d ∧ eq::explicit N d c, CongrH::explicit a b c b (Trans::explicit N a d c (Conjunct1::explicit (eq::explicit N a d) (eq::explicit N d c) H1) (Conjunct2::explicit (eq::explicit N a d) (eq::explicit N d c) H1)) (Refl::explicit N b)) Proved: Example2 Set: lean::pp::implicit Theorem Example2 (a b c d : N) (H : eq::explicit N a b ∧ eq::explicit N b c ∨ eq::explicit N a d ∧ eq::explicit N d c) : eq::explicit N (h a b) (h c b) := DisjCases::explicit (eq::explicit N a b ∧ eq::explicit N b c) (eq::explicit N a d ∧ eq::explicit N d c) ((h a b) == (h c b)) H (λ H1 : eq::explicit N a b ∧ eq::explicit N b c, CongrH::explicit a b c b (Trans::explicit N a b c (Conjunct1::explicit (a == b) (b == c) H1) (Conjunct2::explicit (a == b) (b == c) H1)) (Refl::explicit N b)) (λ H1 : eq::explicit N a d ∧ eq::explicit N d c, CongrH::explicit a b c b (Trans::explicit N a d c (Conjunct1::explicit (a == d) (d == c) H1) (Conjunct2::explicit (a == d) (d == c) H1)) (Refl::explicit N b)) Proved: Example3 Set: lean::pp::implicit Theorem Example3 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a b) = (h c b) := DisjCases H (λ H1 : a = b ∧ b = e ∧ b = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1))) (Refl b)) (λ H1 : a = d ∧ d = c, CongrH (Trans (Conjunct1 H1) (Conjunct2 H1)) (Refl b)) Proved: Example4 Set: lean::pp::implicit Theorem Example4 (a b c d e : N) (H : a = b ∧ b = e ∧ b = c ∨ a = d ∧ d = c) : (h a c) = (h c a) := DisjCases H (λ H1 : a = b ∧ b = e ∧ b = c, let AeqC := Trans (Conjunct1 H1) (Conjunct2 (Conjunct2 H1)) in CongrH AeqC (Symm AeqC)) (λ H1 : a = d ∧ d = c, let AeqC := Trans (Conjunct1 H1) (Conjunct2 H1) in CongrH AeqC (Symm AeqC))