/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad Finite products and sums on the integers. -/ import data.int.order algebra.group_bigops algebra.group_set_bigops open list namespace int open [classes] algebra local attribute int.decidable_linear_ordered_comm_ring [instance] variables {A : Type} [deceqA : decidable_eq A] /- Prodl -/ definition Prodl (l : list A) (f : A → int) : int := algebra.Prodl l f notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r theorem Prodl_nil (f : A → int) : Prodl [] f = 1 := algebra.Prodl_nil f theorem Prodl_cons (f : A → int) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f := algebra.Prodl_cons f a l theorem Prodl_append (l₁ l₂ : list A) (f : A → int) : Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f := algebra.Prodl_append l₁ l₂ f theorem Prodl_mul (l : list A) (f g : A → int) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := algebra.Prodl_mul l f g section deceqA include deceqA theorem Prodl_insert_of_mem (f : A → int) {a : A} {l : list A} (H : a ∈ l) : Prodl (insert a l) f = Prodl l f := algebra.Prodl_insert_of_mem f H theorem Prodl_insert_of_not_mem (f : A → int) {a : A} {l : list A} (H : a ∉ l) : Prodl (insert a l) f = f a * Prodl l f := algebra.Prodl_insert_of_not_mem f H theorem Prodl_union {l₁ l₂ : list A} (f : A → int) (d : disjoint l₁ l₂) : Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := algebra.Prodl_union f d theorem Prodl_one (l : list A) : Prodl l (λ x, 1) = 1 := algebra.Prodl_one l end deceqA /- Prod over finset -/ namespace finset open finset definition Prod (s : finset A) (f : A → int) : int := algebra.finset.Prod s f notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r theorem Prod_empty (f : A → int) : Prod ∅ f = 1 := algebra.finset.Prod_empty f theorem Prod_mul (s : finset A) (f g : A → int) : Prod s (λx, f x * g x) = Prod s f * Prod s g := algebra.finset.Prod_mul s f g section deceqA include deceqA theorem Prod_insert_of_mem (f : A → int) {a : A} {s : finset A} (H : a ∈ s) : Prod (insert a s) f = Prod s f := algebra.finset.Prod_insert_of_mem f H theorem Prod_insert_of_not_mem (f : A → int) {a : A} {s : finset A} (H : a ∉ s) : Prod (insert a s) f = f a * Prod s f := algebra.finset.Prod_insert_of_not_mem f H theorem Prod_union (f : A → int) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := algebra.finset.Prod_union f disj theorem Prod_ext {s : finset A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) : Prod s f = Prod s g := algebra.finset.Prod_ext H theorem Prod_one (s : finset A) : Prod s (λ x, 1) = 1 := algebra.finset.Prod_one s end deceqA end finset /- Prod over set -/ namespace set open set noncomputable definition Prod (s : set A) (f : A → int) : int := algebra.set.Prod s f notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r theorem Prod_empty (f : A → int) : Prod ∅ f = 1 := algebra.set.Prod_empty f theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → int) : Prod s f = 1 := algebra.set.Prod_of_not_finite nfins f theorem Prod_mul (s : set A) (f g : A → int) : Prod s (λx, f x * g x) = Prod s f * Prod s g := algebra.set.Prod_mul s f g theorem Prod_insert_of_mem (f : A → int) {a : A} {s : set A} (H : a ∈ s) : Prod (insert a s) f = Prod s f := algebra.set.Prod_insert_of_mem f H theorem Prod_insert_of_not_mem (f : A → int) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) : Prod (insert a s) f = f a * Prod s f := algebra.set.Prod_insert_of_not_mem f H theorem Prod_union (f : A → int) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := algebra.set.Prod_union f disj theorem Prod_ext {s : set A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) : Prod s f = Prod s g := algebra.set.Prod_ext H theorem Prod_one (s : set A) : Prod s (λ x, 1) = 1 := algebra.set.Prod_one s end set /- Suml -/ definition Suml (l : list A) (f : A → int) : int := algebra.Suml l f notation `∑` binders `←` l, r:(scoped f, Suml l f) := r theorem Suml_nil (f : A → int) : Suml [] f = 0 := algebra.Suml_nil f theorem Suml_cons (f : A → int) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f := algebra.Suml_cons f a l theorem Suml_append (l₁ l₂ : list A) (f : A → int) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f := algebra.Suml_append l₁ l₂ f theorem Suml_add (l : list A) (f g : A → int) : Suml l (λx, f x + g x) = Suml l f + Suml l g := algebra.Suml_add l f g section deceqA include deceqA theorem Suml_insert_of_mem (f : A → int) {a : A} {l : list A} (H : a ∈ l) : Suml (insert a l) f = Suml l f := algebra.Suml_insert_of_mem f H theorem Suml_insert_of_not_mem (f : A → int) {a : A} {l : list A} (H : a ∉ l) : Suml (insert a l) f = f a + Suml l f := algebra.Suml_insert_of_not_mem f H theorem Suml_union {l₁ l₂ : list A} (f : A → int) (d : disjoint l₁ l₂) : Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := algebra.Suml_union f d theorem Suml_zero (l : list A) : Suml l (λ x, 0) = 0 := algebra.Suml_zero l end deceqA /- Sum over a finset -/ namespace finset open finset definition Sum (s : finset A) (f : A → int) : int := algebra.finset.Sum s f notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → int) : Sum ∅ f = 0 := algebra.finset.Sum_empty f theorem Sum_add (s : finset A) (f g : A → int) : Sum s (λx, f x + g x) = Sum s f + Sum s g := algebra.finset.Sum_add s f g section deceqA include deceqA theorem Sum_insert_of_mem (f : A → int) {a : A} {s : finset A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := algebra.finset.Sum_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → int) {a : A} {s : finset A} (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := algebra.finset.Sum_insert_of_not_mem f H theorem Sum_union (f : A → int) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := algebra.finset.Sum_union f disj theorem Sum_ext {s : finset A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := algebra.finset.Sum_ext H theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = 0 := algebra.finset.Sum_zero s end deceqA end finset /- Sum over a set -/ namespace set open set noncomputable definition Sum (s : set A) (f : A → int) : int := algebra.set.Sum s f notation `∏` binders `∈` s, r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → int) : Sum ∅ f = 0 := algebra.set.Sum_empty f theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → int) : Sum s f = 0 := algebra.set.Sum_of_not_finite nfins f theorem Sum_add (s : set A) (f g : A → int) : Sum s (λx, f x + g x) = Sum s f + Sum s g := algebra.set.Sum_add s f g theorem Sum_insert_of_mem (f : A → int) {a : A} {s : set A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := algebra.set.Sum_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → int) {a : A} {s : set A} [fins : finite s] (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := algebra.set.Sum_insert_of_not_mem f H theorem Sum_union (f : A → int) {s₁ s₂ : set A} [fins₁ : finite s₁] [fins₂ : finite s₂] (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := algebra.set.Sum_union f disj theorem Sum_ext {s : set A} {f g : A → int} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := algebra.set.Sum_ext H theorem Sum_zero (s : set A) : Sum s (λ x, 0) = 0 := algebra.set.Sum_zero s end set end int