/- Copyright (c) 2016 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis Derivatives on ℝ -/ import .bounded_linear_operator open real nat classical topology analysis set noncomputable theory namespace real -- make instance of const mul bdd lin op? definition has_deriv_at (f : ℝ → ℝ) (d x : ℝ) := has_frechet_deriv_at f (λ t, d • t) x theorem has_deriv_at_intro (f : ℝ → ℝ) (d x : ℝ) (H : (λ h, (f (x + h) - f x) / h) ⟶ d [at 0]) : has_deriv_at f d x := begin apply has_frechet_deriv_at_intro, intros ε Hε, cases approaches_at_dest H Hε with δ Hδ, existsi δ, split, exact and.left Hδ, intro y Hy, rewrite [-sub_zero y at Hy{2}], note Hδ' := and.right Hδ y (and.right Hy) (and.left Hy), have Hδ'' : abs ((f (x + y) - f x - d * y) / y) < ε, by rewrite [-div_sub_div_same, mul_div_cancel _ (and.left Hy)]; apply Hδ', show abs (f (x + y) - f x - d * y) / abs y < ε, by rewrite -abs_div; apply Hδ'' end theorem has_deriv_at_of_has_frechet_deriv_at {f g : ℝ → ℝ} [is_bdd_linear_map g] {d x : ℝ} (H : has_frechet_deriv_at f g x) (Hg : g = λ x, d * x) : has_deriv_at f d x := by apply is_frechet_deriv_at_of_eq H Hg theorem has_deriv_at_const (c x : ℝ) : has_deriv_at (λ t, c) 0 x := has_deriv_at_of_has_frechet_deriv_at (@has_frechet_deriv_at_const ℝ ℝ _ _ _ c) (funext (λ v, by rewrite zero_mul)) theorem has_deriv_at_id (x : ℝ) : has_deriv_at (λ t, t) 1 x := has_deriv_at_of_has_frechet_deriv_at (@has_frechet_deriv_at_id ℝ ℝ _ _ _) (funext (λ v, by rewrite one_mul)) theorem has_deriv_at_mul {f : ℝ → ℝ} {d x : ℝ} (H : has_deriv_at f d x) (c : ℝ) : has_deriv_at (λ t, c * f t) (c * d) x := has_deriv_at_of_has_frechet_deriv_at (has_frechet_deriv_at_smul _ _ c H) (funext (λ v, by rewrite mul.assoc)) end real