/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include "frontend.h" #include "context.h" #include "scoped_map.h" #include "expr_formatter.h" #include "occurs.h" #include "instantiate.h" #include "options.h" #ifndef LEAN_DEFAULT_PP_MAX_DEPTH #define LEAN_DEFAULT_PP_MAX_DEPTH std::numeric_limits::max() #endif #ifndef LEAN_DEFAULT_PP_MAX_STEPS #define LEAN_DEFAULT_PP_MAX_STEPS std::numeric_limits::max() #endif #ifndef LEAN_DEFAULT_PP_IMPLICIT #define LEAN_DEFAULT_PP_IMPLICIT false #endif #ifndef LEAN_DEFAULT_PP_NOTATION #define LEAN_DEFAULT_PP_NOTATION true #endif #ifndef LEAN_DEFAULT_PP_EXTRA_LETS #define LEAN_DEFAULT_PP_EXTRA_LETS true #endif #ifndef LEAN_DEFAULT_PP_ALIAS_MIN_DEPTH #define LEAN_DEFAULT_PP_ALIAS_MIN_DEPTH 1000 //TODO: fix to reasonable value #endif namespace lean { static format g_Type_fmt = highlight_builtin(format("Type")); static unsigned g_eq_prec = 20; static format g_eq_fmt = format("="); static char const * g_eq_sym = "eq"; static unsigned g_eq_sz = strlen(g_eq_sym); static format g_eq_sym_fmt = format(g_eq_sym); static format g_lambda_fmt = highlight_keyword(format("\u03BB")); static format g_Pi_fmt = highlight_keyword(format("\u03A0")); static format g_arrow_fmt = highlight_keyword(format("\u2192")); static format g_ellipsis_fmt = highlight(format("\u2026")); static format g_let_fmt = highlight_keyword(format("let")); static format g_in_fmt = highlight_keyword(format("in")); static name g_pp_max_depth {"pp", "max_depth"}; static name g_pp_max_steps {"pp", "max_steps"}; static name g_pp_implicit {"pp", "implicit"}; static name g_pp_notation {"pp", "notation"}; static name g_pp_extra_lets {"pp", "extra_lets"}; static name g_pp_alias_min_depth {"pp", "alias_min_depth"}; unsigned get_pp_max_depth(options const & opts) { return opts.get_unsigned(g_pp_max_depth, LEAN_DEFAULT_PP_MAX_DEPTH); } unsigned get_pp_max_steps(options const & opts) { return opts.get_unsigned(g_pp_max_steps, LEAN_DEFAULT_PP_MAX_STEPS); } bool get_pp_implicit(options const & opts) { return opts.get_bool(g_pp_implicit, LEAN_DEFAULT_PP_IMPLICIT); } bool get_pp_notation(options const & opts) { return opts.get_bool(g_pp_notation, LEAN_DEFAULT_PP_NOTATION); } bool get_pp_extra_lets(options const & opts) { return opts.get_bool(g_pp_extra_lets, LEAN_DEFAULT_PP_EXTRA_LETS); } unsigned get_pp_alias_min_depth(options const & opts) { return opts.get_unsigned(g_pp_alias_min_depth, LEAN_DEFAULT_PP_ALIAS_MIN_DEPTH); } /** \brief Functional object for pretty printing expressions */ struct pp_fn { typedef scoped_map aliases; typedef std::vector> aliases_defs; frontend const & m_frontend; context const & m_context; // State aliases m_aliases; aliases_defs m_aliases_defs; unsigned m_num_steps; name m_aux; // Configuration unsigned m_indent; unsigned m_max_depth; unsigned m_max_steps; bool m_implict; bool m_notation; //!< if true use notation bool m_extra_lets; //!< introduce extra let-expression to cope with sharing. unsigned m_alias_min_depth; //!< minimal depth to create an alias // Create a scope for local definitions struct mk_scope { pp_fn & m_fn; unsigned m_old_size; mk_scope(pp_fn & fn):m_fn(fn), m_old_size(fn.m_aliases_defs.size()) { m_fn.m_aliases.push(); } ~mk_scope() { lean_assert(m_old_size <= m_fn.m_aliases_defs.size()); m_fn.m_aliases.pop(); m_fn.m_aliases_defs.resize(m_old_size); } }; format nest(unsigned i, format const & f) { return ::lean::nest(i, f); } typedef std::pair result; /** \brief Return true iff \c e is an atomic operation. */ bool is_atomic(expr const & e) { switch (e.kind()) { case expr_kind::Var: case expr_kind::Constant: case expr_kind::Value: case expr_kind::Type: return true; case expr_kind::App: case expr_kind::Lambda: case expr_kind::Pi: case expr_kind::Eq: case expr_kind::Let: return false; } return false; } result mk_result(format const & fmt, unsigned depth) { return mk_pair(fmt, depth); } result pp_ellipsis() { return mk_result(g_ellipsis_fmt, 1); } result pp_var(expr const & e) { unsigned vidx = var_idx(e); return mk_result(compose(format("#"), format(vidx)), 1); } result pp_constant(expr const & e) { return mk_result(::lean::pp(const_name(e)), 1); } result pp_value(expr const & e) { return mk_result(to_value(e).pp(), 1); } result pp_type(expr const & e) { if (e == Type()) { return mk_result(g_Type_fmt, 1); } else { return mk_result(format{g_Type_fmt, space(), ::lean::pp(ty_level(e))}, 1); } } /** \brief Return the operator associated with \c e. Return the nil operator if there is none. We say \c e has an operator associated with it, if: 1) It is a constant and there is an operator associated with it. 2) It is an application, and the function is a constant \c c with an operator associated with \c c. */ operator_info get_operator(expr const & e) { if (is_constant(e)) return m_frontend.find_op_for(const_name(e)); else if (is_app(e) && is_constant(arg(e, 0))) return m_frontend.find_op_for(const_name(arg(e, 0))); else return operator_info(); } /** \brief Return true if the application \c e has the number of arguments expected by the operator \c op. */ bool has_expected_num_args(expr const & e, operator_info const & op) { switch (op.get_fixity()) { case fixity::Infix: case fixity::Infixl: case fixity::Infixr: return num_args(e) == 3; case fixity::Prefix: case fixity::Postfix: return num_args(e) == 2; case fixity::Mixfixl: case fixity::Mixfixr: return num_args(e) == length(op.get_op_name_parts()) + 1; case fixity::Mixfixc: return num_args(e) == length(op.get_op_name_parts()); } lean_unreachable(); return false; } /** \brief Pretty print given expression and put parenthesis around it. */ result pp_child_with_paren(expr const & e, unsigned depth) { result r = pp(e, depth + 1); return mk_result(format{lp(), r.first, rp()}, r.second); } /** \brief Pretty print given expression and put parenthesis around it if it is not atomic. */ result pp_child(expr const & e, unsigned depth) { if (is_atomic(e)) return pp(e, depth + 1); else return pp_child_with_paren(e, depth); } /** \brief Pretty print the child of an infix, prefix, postfix or mixfix operator. It will add parethesis when needed. */ result pp_mixfix_child(operator_info const & op, expr const & e, unsigned depth) { if (is_atomic(e)) { return pp(e, depth + 1); } else { operator_info op_child = get_operator(e); if (op_child && op.get_precedence() < op_child.get_precedence()) return pp(e, depth + 1); else return pp_child_with_paren(e, depth); } } /** \brief Pretty print the child of an associative infix operator. It will add parethesis when needed. */ result pp_infix_child(operator_info const & op, expr const & e, unsigned depth) { if (is_atomic(e)) { return pp(e, depth + 1); } else { operator_info op_child = get_operator(e); if (op_child && (op == op_child || op.get_precedence() < op_child.get_precedence())) return pp(e, depth + 1); else return pp_child_with_paren(e, depth); } } result mk_infix(operator_info const & op, result const & lhs, result const & rhs) { unsigned r_depth = std::max(lhs.second, rhs.second) + 1; format r_format = group(format{lhs.first, space(), format(op.get_op_name()), line(), rhs.first}); return mk_result(r_format, r_depth); } /** \brief Pretty print an application. */ result pp_app(expr const & e, unsigned depth) { operator_info op; if (m_notation && (op = get_operator(e)) && has_expected_num_args(e, op)) { result p_arg; format r_format; unsigned sz; unsigned r_depth = 0; switch (op.get_fixity()) { case fixity::Infix: return mk_infix(op, pp_mixfix_child(op, arg(e, 1), depth), pp_mixfix_child(op, arg(e, 2), depth)); case fixity::Infixr: return mk_infix(op, pp_mixfix_child(op, arg(e, 1), depth), pp_infix_child(op, arg(e, 2), depth)); case fixity::Infixl: return mk_infix(op, pp_infix_child(op, arg(e, 1), depth), pp_mixfix_child(op, arg(e, 2), depth)); case fixity::Prefix: p_arg = pp_infix_child(op, arg(e, 1), depth); sz = op.get_op_name().size(); return mk_result(group(format{format(op.get_op_name()), nest(sz+1, format{line(), p_arg.first})}), p_arg.second + 1); case fixity::Postfix: p_arg = pp_mixfix_child(op, arg(e, 1), depth); return mk_result(group(format{p_arg.first, space(), format(op.get_op_name())}), p_arg.second + 1); case fixity::Mixfixr: { // _ ID ... _ ID list parts = op.get_op_name_parts(); auto it = parts.begin(); for (unsigned i = 1; i < num_args(e); i++) { result p_arg = pp_mixfix_child(op, arg(e, i), depth); r_format += format{p_arg.first, space(), format(*it), line()}; r_depth = std::max(r_depth, p_arg.second); ++it; } return mk_result(group(r_format), r_depth + 1); } case fixity::Mixfixl: case fixity::Mixfixc: { // ID _ ... _ // ID _ ... _ ID list parts = op.get_op_name_parts(); auto it = parts.begin(); for (unsigned i = 1; i < num_args(e); i++) { result p_arg = pp_mixfix_child(op, arg(e, i), depth); unsigned sz = (*it).size(); r_format += format{format(*it), nest(sz+1, format{line(), p_arg.first})}; r_depth = std::max(r_depth, p_arg.second); ++it; } if (it != parts.end()) { // it is Mixfixc r_format += format{space(), format(*it)}; } return mk_result(group(r_format), r_depth + 1); }} lean_unreachable(); return mk_result(format(), 0); } else { // standard function application result p = pp_child(arg(e, 0), depth); format r_format = p.first; unsigned r_depth = p.second; for (unsigned i = 1; i < num_args(e); i++) { result p_arg = pp_child(arg(e, i), depth); r_format += format{line(), p_arg.first}; r_depth = std::max(r_depth, p_arg.second); } return mk_result(group(nest(m_indent, r_format)), r_depth + 1); } } /** \brief Collect nested Lambdas (or Pis), and instantiate variables with unused names. Store in \c r the selected names and associated domains. Return the body of the sequence of Lambda (of Pis). \remark The argument B is only relevant when processing condensed definitions. \see pp_abstraction_core. */ std::pair collect_nested(expr const & e, expr T, expr_kind k, buffer> & r) { if (e.kind() == k) { name const & n = abst_name(e); name n1 = n; unsigned i = 1; while (occurs(n1, abst_body(e))) { n1 = name(n, i); i++; } r.push_back(mk_pair(n1, abst_domain(e))); expr b = instantiate_with_closed(abst_body(e), mk_constant(n1)); if (T) T = instantiate_with_closed(abst_body(T), mk_constant(n1)); return collect_nested(b, T, k, r); } else { return mk_pair(e, T); } } result pp_scoped_child(expr const & e, unsigned depth) { if (is_atomic(e)) { return pp(e, depth + 1); } else { mk_scope s(*this); // TODO: create Let with new aliases return pp(e, depth+1); } } result pp_arrow_body(expr const & e, unsigned depth) { if (is_atomic(e) || is_arrow(e)) { return pp(e, depth + 1); } else { return pp_child_with_paren(e, depth); } } template format pp_bnames(It const & begin, It const & end, bool use_line) { auto it = begin; format r = format(it->first); ++it; for (; it != end; ++it) { r += compose(use_line ? line() : space(), format(it->first)); } return r; } /** \brief Pretty print Lambdas, Pis and compact definitions. When T != 0, it is a compact definition. A compact definition is of the form Defintion Name Pi(x : A), B := Lambda (x : A), C it is printed as Defintion Name (x : A) : B := C This method only generates the (x : A) : B := C for compact definitions. \remark if T != 0, then T is Pi(x : A), B */ result pp_abstraction_core(expr const & e, unsigned depth, expr T) { if (is_arrow(e)) { lean_assert(!T); result p_lhs = pp_child(abst_domain(e), depth); result p_rhs = pp_arrow_body(abst_body(e), depth); format r_format = group(format{p_lhs.first, space(), g_arrow_fmt, line(), p_rhs.first}); return mk_result(r_format, std::max(p_lhs.second, p_rhs.second) + 1); } else { buffer> nested; auto p = collect_nested(e, T, e.kind(), nested); expr b = p.first; T = p.second; lean_assert(b.kind() != e.kind()); format head; if (!T) { head = is_lambda(e) ? g_lambda_fmt : g_Pi_fmt; } format body_sep; if (T) { format T_f = pp(T, 0).first; body_sep = format{space(), colon(), space(), T_f, space(), highlight_keyword(format(":="))}; } else { body_sep = comma(); } expr domain0 = nested[0].second; if (std::all_of(nested.begin() + 1, nested.end(), [&](std::pair const & p) { return p.second == domain0; })) { // Domain of all binders is the same format names = pp_bnames(nested.begin(), nested.end(), false); result p_domain = pp_scoped_child(domain0, depth); result p_body = pp_scoped_child(b, depth); format sig = format{names, space(), colon(), space(), p_domain.first}; if (T) sig = format{lp(), sig, rp()}; format r_format = group(nest(m_indent, format{head, space(), sig, body_sep, line(), p_body.first})); return mk_result(r_format, std::max(p_domain.second, p_body.second)+1); } else { auto it = nested.begin(); auto end = nested.end(); unsigned r_depth; // PP binders in blocks (names ... : type) bool first = true; format bindings; while (it != end) { auto it2 = it; ++it2; while (it2 != end && it2->second == it->second) { ++it2; } result p_domain = pp_scoped_child(it->second, depth); r_depth = std::max(r_depth, p_domain.second); format block = group(nest(m_indent, format{lp(), pp_bnames(it, it2, true), space(), colon(), space(), p_domain.first, rp()})); if (first) { bindings = block; first = false; } else { bindings += compose(line(), block); } it = it2; } result p_body = pp_scoped_child(b, depth); format r_format = group(nest(m_indent, format{head, space(), group(bindings), body_sep, line(), p_body.first})); return mk_result(r_format, std::max(r_depth, p_body.second)+1); } } } result pp_abstraction(expr const & e, unsigned depth) { return pp_abstraction_core(e, depth, expr()); } result pp_let(expr const & e, unsigned depth) { // TODO return mk_result(format("TODO"), 1); } /** \brief Pretty print the child of an equality. */ result pp_eq_child(expr const & e, unsigned depth) { if (is_atomic(e)) { return pp(e, depth + 1); } else { operator_info op_child = get_operator(e); if (op_child && g_eq_prec < op_child.get_precedence()) return pp(e, depth + 1); else return pp_child_with_paren(e, depth); } } /** \brief Pretty print an equality */ result pp_eq(expr const & e, unsigned depth) { result p_arg1, p_arg2; format r_format; if (m_notation) { p_arg1 = pp_eq_child(eq_lhs(e), depth); p_arg2 = pp_eq_child(eq_rhs(e), depth); r_format = group(format{p_arg1.first, space(), g_eq_fmt, line(), p_arg2.first}); } else { p_arg1 = pp_child(eq_lhs(e), depth); p_arg2 = pp_child(eq_rhs(e), depth); r_format = group(format{g_eq_sym_fmt, nest(g_eq_sz + 1, format{line(), p_arg1.first, line(), p_arg2.first})}); } return mk_result(r_format, std::max(p_arg1.second, p_arg2.second) + 1); } result pp(expr const & e, unsigned depth) { if (m_num_steps > m_max_steps || depth > m_max_depth) { return pp_ellipsis(); } else { m_num_steps++; if (m_extra_lets && is_shared(e)) { auto it = m_aliases.find(e); if (it != m_aliases.end()) return mk_result(format(it->second), 1); } result r; switch (e.kind()) { case expr_kind::Var: r = pp_var(e); break; case expr_kind::Constant: r = pp_constant(e); break; case expr_kind::Value: r = pp_value(e); break; case expr_kind::App: r = pp_app(e, depth); break; case expr_kind::Lambda: case expr_kind::Pi: r = pp_abstraction(e, depth); break; case expr_kind::Type: r = pp_type(e); break; case expr_kind::Eq: r = pp_eq(e, depth); break; case expr_kind::Let: r = pp_let(e, depth); break; } if (m_extra_lets && is_shared(e) && r.second > m_alias_min_depth) { std::cout << "DEPTH: " << r.second << "\n"; name new_aux = name(m_aux, m_aliases.size()); m_aliases.insert(e, new_aux); return mk_result(format(new_aux), 1); } return r; } } void set_options(options const & opts) { m_indent = get_pp_indent(opts); m_max_depth = get_pp_max_depth(opts); m_max_steps = get_pp_max_steps(opts); m_implict = get_pp_implicit(opts); m_notation = get_pp_notation(opts); m_extra_lets = get_pp_extra_lets(opts); m_alias_min_depth = get_pp_alias_min_depth(opts); } pp_fn(frontend const & fe, context const & ctx, options const & opts): m_frontend(fe), m_context(ctx) { set_options(opts); } format operator()(expr const & e) { m_aliases.clear(); m_aliases_defs.clear(); m_num_steps = 0; m_aux = name("aux"); // TODO: find non used prefix return pp(e, 0).first; } }; class pp_expr_formatter : public expr_formatter { frontend const & m_frontend; options m_options; public: pp_expr_formatter(frontend const & fe, options const & opts): m_frontend(fe), m_options(opts) { } virtual ~pp_expr_formatter() { } virtual options get_options() const { return m_options; } // TODO: remove context parameter from expr_formatter // The context pretty printer must open the expression // before pretty-printing it. virtual format operator()(expr const & e, context const & c) { return pp_fn(m_frontend, c, m_options)(e); } virtual format operator()(char const * kwd, name const & n, expr const & t, expr const & v) { expr it1 = t; expr it2 = v; while (is_pi(it1) && is_lambda(it2)) { if (abst_domain(it1) != abst_domain(it2)) return expr_formatter::operator()(kwd, n, t, v); it1 = abst_body(it1); it2 = abst_body(it2); } if (!is_lambda(v) || is_pi(it1) || is_lambda(it2)) { return expr_formatter::operator()(kwd, n, t, v); } else { lean_assert(is_lambda(v)); format def = pp_fn(m_frontend, context(), m_options).pp_abstraction_core(v, 0, t).first; return format{highlight_command(format(kwd)), space(), format(n), def}; } } }; std::shared_ptr mk_pp_expr_formatter(frontend const & fe, options const & opts) { return std::shared_ptr(new pp_expr_formatter(fe, opts)); } }