import data.nat open nat eq.ops definition fib.F (n : nat) : (Π (m : nat), m < n → nat) → nat := nat.cases_on n (λ (f : Π (m : nat), m < zero → nat), succ zero) (λ (n₁ : nat), nat.cases_on n₁ (λ (f : Π (m : nat), m < (succ zero) → nat), succ zero) (λ (n₂ : nat) (f : Π (m : nat), m < (succ (succ n₂)) → nat), have l₁ : succ n₂ < succ (succ n₂), from lt.base (succ n₂), have l₂ : n₂ < succ (succ n₂), from lt.trans (lt.base n₂) l₁, f (succ n₂) l₁ + f n₂ l₂)) definition fib (n : nat) := well_founded.fix fib.F n theorem fib.zero_eq : fib 0 = 1 := well_founded.fix_eq fib.F 0 theorem fib.one_eq : fib 1 = 1 := well_founded.fix_eq fib.F 1 theorem fib.succ_succ_eq (n : nat) : fib (succ (succ n)) = fib (succ n) + fib n := well_founded.fix_eq fib.F (succ (succ n)) example : fib 5 = 8 := rfl example : fib 6 = 13 := rfl