-- BEGINWAIT -- ENDWAIT -- BEGINFINDP STALE false|Prop false_or|∀ (a : Prop), false ∨ a ↔ a false.rec|Π (C : Type), false → C false_iff|∀ (a : Prop), false ↔ a ↔ ¬a false_and|∀ (a : Prop), false ∧ a ↔ false false.elim|false → ?c false_of_ne|?a ≠ ?a → false false.rec_on|Π (C : Type), false → C false_iff_true|false ↔ true ↔ false false.cases_on|Π (C : Type), false → C false.induction_on|∀ (C : Prop), false → C false_of_true_iff_false|(true ↔ false) → false true_ne_false|¬true = false simplifier.unit_simp.false_imp|false → ?A ↔ true nat.lt_self_iff_false|∀ (n : ℕ), n < n ↔ false iff_false|∀ (a : Prop), a ↔ false ↔ ¬a true_iff_false|true ↔ false ↔ false ne_self_iff_false|∀ (a : ?A), ¬a = a ↔ false not_of_is_false|is_false ?c → ¬?c or_false|∀ (a : Prop), a ∨ false ↔ a not_of_iff_false|(?a ↔ false) → ¬?a is_false|Π (c : Prop) [H : decidable c], Prop classical.eq_true_or_eq_false|∀ (a : Prop), a = true ∨ a = false classical.eq_false_or_eq_true|∀ (a : Prop), a = false ∨ a = true simplifier.unit_simp.not_true_of_false|¬true ↔ false nat.lt_zero_iff_false|∀ (a : ℕ), a < 0 ↔ false not_of_eq_false|?p = false → ¬?p nat.succ_le_self_iff_false|∀ (n : ℕ), nat.succ n ≤ n ↔ false decidable.rec_on_false|Π (H3 : ¬?p), ?H2 H3 → decidable.rec_on ?H ?H1 ?H2 not_false|¬false decidable_false|decidable false not_false_iff|¬false ↔ true of_not_is_false|¬is_false ?c → ?c classical.cases_true_false|∀ (P : Prop → Prop), P true → P false → (∀ (a : Prop), P a) iff_false_intro|¬?a → (?a ↔ false) and_false|∀ (a : Prop), a ∧ false ↔ false if_false|∀ (t e : ?A), ite false t e = e ne_false_of_self|?p → ?p ≠ false nat.succ_le_zero_iff_false|∀ (n : ℕ), nat.succ n ≤ 0 ↔ false tactic.exfalso|tactic -- ENDFINDP