-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad definition Prop [inline] := Type.{0} inductive false : Prop := -- No constructors theorem false_elim (c : Prop) (H : false) : c := false_rec c H inductive true : Prop := | trivial : true definition not (a : Prop) := a → false prefix `¬`:40 := not notation `assume` binders `,` r:(scoped f, f) := r notation `take` binders `,` r:(scoped f, f) := r theorem not_intro {a : Prop} (H : a → false) : ¬a := H theorem not_elim {a : Prop} (H1 : ¬a) (H2 : a) : false := H1 H2 theorem absurd {a : Prop} (H1 : a) (H2 : ¬a) : false := H2 H1 theorem not_not_intro {a : Prop} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna theorem mt {a b : Prop} (H1 : a → b) (H2 : ¬b) : ¬a := assume Ha : a, absurd (H1 Ha) H2 theorem contrapos {a b : Prop} (H : a → b) : ¬ b → ¬ a := assume Hnb : ¬b, mt H Hnb theorem absurd_elim {a : Prop} (b : Prop) (H1 : a) (H2 : ¬a) : b := false_elim b (absurd H1 H2) theorem absurd_not_true (H : ¬true) : false := absurd trivial H theorem not_false_trivial : ¬false := assume H : false, H theorem not_implies_left {a b : Prop} (H : ¬(a → b)) : ¬¬a := assume Hna : ¬a, absurd (assume Ha : a, absurd_elim b Ha Hna) H theorem not_implies_right {a b : Prop} (H : ¬(a → b)) : ¬b := assume Hb : b, absurd (assume Ha : a, Hb) H inductive and (a b : Prop) : Prop := | and_intro : a → b → and a b infixr `/\`:35 := and infixr `∧`:35 := and theorem and_elim {a b c : Prop} (H1 : a → b → c) (H2 : a ∧ b) : c := and_rec H1 H2 theorem and_elim_left {a b : Prop} (H : a ∧ b) : a := and_rec (λa b, a) H theorem and_elim_right {a b : Prop} (H : a ∧ b) : b := and_rec (λa b, b) H theorem and_swap {a b : Prop} (H : a ∧ b) : b ∧ a := and_intro (and_elim_right H) (and_elim_left H) theorem and_not_left {a : Prop} (b : Prop) (Hna : ¬a) : ¬(a ∧ b) := assume H : a ∧ b, absurd (and_elim_left H) Hna theorem and_not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) := assume H : a ∧ b, absurd (and_elim_right H) Hnb inductive or (a b : Prop) : Prop := | or_intro_left : a → or a b | or_intro_right : b → or a b infixr `\/`:30 := or infixr `∨`:30 := or theorem or_elim {a b c : Prop} (H1 : a ∨ b) (H2 : a → c) (H3 : b → c) : c := or_rec H2 H3 H1 theorem resolve_right {a b : Prop} (H1 : a ∨ b) (H2 : ¬a) : b := or_elim H1 (assume Ha, absurd_elim b Ha H2) (assume Hb, Hb) theorem resolve_left {a b : Prop} (H1 : a ∨ b) (H2 : ¬b) : a := or_elim H1 (assume Ha, Ha) (assume Hb, absurd_elim a Hb H2) theorem or_swap {a b : Prop} (H : a ∨ b) : b ∨ a := or_elim H (assume Ha, or_intro_right b Ha) (assume Hb, or_intro_left a Hb) theorem or_not_intro {a b : Prop} (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) := assume H : a ∨ b, or_elim H (assume Ha, absurd_elim _ Ha Hna) (assume Hb, absurd_elim _ Hb Hnb) inductive eq {A : Type} (a : A) : A → Prop := | refl : eq a a infix `=`:50 := eq theorem subst {A : Type} {a b : A} {P : A → Prop} (H1 : a = b) (H2 : P a) : P b := eq_rec H2 H1 theorem trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b = c) : a = c := subst H2 H1 calc_subst subst calc_refl refl calc_trans trans theorem true_ne_false : ¬true = false := assume H : true = false, subst H trivial theorem symm {A : Type} {a b : A} (H : a = b) : b = a := subst H (refl a) theorem congr1 {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) (a : A) : f a = g a := subst H (refl (f a)) theorem congr2 {A : Type} {B : Type} {a b : A} (f : A → B) (H : a = b) : f a = f b := subst H (refl (f a)) theorem congr {A : Type} {B : Type} {f g : A → B} {a b : A} (H1 : f = g) (H2 : a = b) : f a = g b := subst H1 (subst H2 (refl (f a))) theorem equal_f {A : Type} {B : A → Type} {f g : Π x, B x} (H : f = g) : ∀x, f x = g x := take x, congr1 H x theorem not_congr {a b : Prop} (H : a = b) : (¬a) = (¬b) := congr2 not H theorem eqmp {a b : Prop} (H1 : a = b) (H2 : a) : b := subst H1 H2 infixl `<|`:100 := eqmp infixl `◂`:100 := eqmp theorem eqmpr {a b : Prop} (H1 : a = b) (H2 : b) : a := (symm H1) ◂ H2 theorem eqt_elim {a : Prop} (H : a = true) : a := (symm H) ◂ trivial theorem eqf_elim {a : Prop} (H : a = false) : ¬a := not_intro (assume Ha : a, H ◂ Ha) theorem imp_trans {a b c : Prop} (H1 : a → b) (H2 : b → c) : a → c := assume Ha, H2 (H1 Ha) theorem imp_eq_trans {a b c : Prop} (H1 : a → b) (H2 : b = c) : a → c := assume Ha, H2 ◂ (H1 Ha) theorem eq_imp_trans {a b c : Prop} (H1 : a = b) (H2 : b → c) : a → c := assume Ha, H2 (H1 ◂ Ha) definition ne [inline] {A : Type} (a b : A) := ¬(a = b) infix `≠`:50 := ne theorem ne_intro {A : Type} {a b : A} (H : a = b → false) : a ≠ b := H theorem ne_elim {A : Type} {a b : A} (H1 : a ≠ b) (H2 : a = b) : false := H1 H2 theorem a_neq_a_elim {A : Type} {a : A} (H : a ≠ a) : false := H (refl a) theorem ne_irrefl {A : Type} {a : A} (H : a ≠ a) : false := H (refl a) theorem not_eq_symm {A : Type} {a b : A} (H : ¬ a = b) : ¬ b = a := assume H1 : b = a, H (symm H1) theorem ne_symm {A : Type} {a b : A} (H : a ≠ b) : b ≠ a := not_eq_symm H theorem eq_ne_trans {A : Type} {a b c : A} (H1 : a = b) (H2 : b ≠ c) : a ≠ c := subst (symm H1) H2 theorem ne_eq_trans {A : Type} {a b c : A} (H1 : a ≠ b) (H2 : b = c) : a ≠ c := subst H2 H1 calc_trans eq_ne_trans calc_trans ne_eq_trans definition iff (a b : Prop) := (a → b) ∧ (b → a) infix `↔`:25 := iff theorem iff_intro {a b : Prop} (H1 : a → b) (H2 : b → a) : a ↔ b := and_intro H1 H2 theorem iff_elim {a b c : Prop} (H1 : (a → b) → (b → a) → c) (H2 : a ↔ b) : c := and_rec H1 H2 theorem iff_elim_left {a b : Prop} (H : a ↔ b) : a → b := iff_elim (assume H1 H2, H1) H theorem iff_elim_right {a b : Prop} (H : a ↔ b) : b → a := iff_elim (assume H1 H2, H2) H theorem iff_mp_left {a b : Prop} (H1 : a ↔ b) (H2 : a) : b := (iff_elim_left H1) H2 theorem iff_mp_right {a b : Prop} (H1 : a ↔ b) (H2 : b) : a := (iff_elim_right H1) H2 theorem iff_flip_sign {a b : Prop} (H1 : a ↔ b) : ¬a ↔ ¬b := iff_intro (assume Hna, mt (iff_elim_right H1) Hna) (assume Hnb, mt (iff_elim_left H1) Hnb) theorem iff_refl (a : Prop) : a ↔ a := iff_intro (assume H, H) (assume H, H) theorem iff_trans {a b c : Prop} (H1 : a ↔ b) (H2 : b ↔ c) : a ↔ c := iff_intro (assume Ha, iff_mp_left H2 (iff_mp_left H1 Ha)) (assume Hc, iff_mp_right H1 (iff_mp_right H2 Hc)) theorem iff_symm {a b : Prop} (H : a ↔ b) : b ↔ a := iff_intro (assume Hb, iff_mp_right H Hb) (assume Ha, iff_mp_left H Ha) calc_trans iff_trans theorem eq_to_iff {a b : Prop} (H : a = b) : a ↔ b := iff_intro (λ Ha, subst H Ha) (λ Hb, subst (symm H) Hb) theorem and_comm (a b : Prop) : a ∧ b ↔ b ∧ a := iff_intro (λH, and_swap H) (λH, and_swap H) theorem and_assoc (a b c : Prop) : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := iff_intro (assume H, and_intro (and_elim_left (and_elim_left H)) (and_intro (and_elim_right (and_elim_left H)) (and_elim_right H))) (assume H, and_intro (and_intro (and_elim_left H) (and_elim_left (and_elim_right H))) (and_elim_right (and_elim_right H))) theorem or_comm (a b : Prop) : a ∨ b ↔ b ∨ a := iff_intro (λH, or_swap H) (λH, or_swap H) theorem or_assoc (a b c : Prop) : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) := iff_intro (assume H, or_elim H (assume H1, or_elim H1 (assume Ha, or_intro_left _ Ha) (assume Hb, or_intro_right a (or_intro_left c Hb))) (assume Hc, or_intro_right a (or_intro_right b Hc))) (assume H, or_elim H (assume Ha, (or_intro_left c (or_intro_left b Ha))) (assume H1, or_elim H1 (assume Hb, or_intro_left c (or_intro_right a Hb)) (assume Hc, or_intro_right _ Hc))) inductive Exists {A : Type} (P : A → Prop) : Prop := | exists_intro : ∀ (a : A), P a → Exists P notation `∃` binders `,` r:(scoped P, Exists P) := r theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B := Exists_rec H2 H1 theorem exists_not_forall {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x := assume H1 : ∀x, ¬p x, obtain (w : A) (Hw : p w), from H, absurd Hw (H1 w) theorem forall_not_exists {A : Type} {p : A → Prop} (H2 : ∀x, p x) : ¬∃x, ¬p x := assume H1 : ∃x, ¬p x, obtain (w : A) (Hw : ¬p w), from H1, absurd (H2 w) Hw definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, y ≠ x → ¬ p y notation `∃!` binders `,` r:(scoped P, exists_unique P) := r theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, y ≠ w → ¬ p y) : ∃!x, p x := exists_intro w (and_intro H1 H2) theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, y ≠ x → ¬ p y) → b) : b := obtain w Hw, from H2, H1 w (and_elim_left Hw) (and_elim_right Hw) inductive inhabited (A : Type) : Prop := | inhabited_intro : A → inhabited A theorem inhabited_elim {A : Type} {B : Prop} (H1 : inhabited A) (H2 : A → B) : B := inhabited_rec H2 H1 theorem inhabited_Prop [instance] : inhabited Prop := inhabited_intro true theorem inhabited_fun [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) := inhabited_elim H (take b, inhabited_intro (λa, b)) theorem inhabited_exists {A : Type} {p : A → Prop} (H : ∃x, p x) : inhabited A := obtain w Hw, from H, inhabited_intro w