/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Define propositional calculus, valuation, provability, validity, prove soundness. This file is based on Floris van Doorn Coq files. Similar to soundness.lean, but defines Nc in Type. The idea is to be able to prove soundness using recursive equations. -/ import data.nat data.list open nat bool list decidable definition PropVar [reducible] := nat inductive PropF := | Var : PropVar → PropF | Bot : PropF | Conj : PropF → PropF → PropF | Disj : PropF → PropF → PropF | Impl : PropF → PropF → PropF namespace PropF notation `#`:max P:max := Var P notation A ∨ B := Disj A B notation A ∧ B := Conj A B infixr `⇒`:27 := Impl notation `⊥` := Bot definition Neg A := A ⇒ ⊥ notation ~ A := Neg A definition Top := ~⊥ notation `⊤` := Top definition BiImpl A B := A ⇒ B ∧ B ⇒ A infixr `⇔`:27 := BiImpl definition valuation := PropVar → bool reserve infix ` ⊢ `:26 /- Provability -/ inductive Nc : list PropF → PropF → Type := infix ⊢ := Nc | Nax : ∀ Γ A, A ∈ Γ → Γ ⊢ A | ImpI : ∀ Γ A B, A::Γ ⊢ B → Γ ⊢ A ⇒ B | ImpE : ∀ Γ A B, Γ ⊢ A ⇒ B → Γ ⊢ A → Γ ⊢ B | BotC : ∀ Γ A, (~A)::Γ ⊢ ⊥ → Γ ⊢ A | AndI : ∀ Γ A B, Γ ⊢ A → Γ ⊢ B → Γ ⊢ A ∧ B | AndE₁ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ A | AndE₂ : ∀ Γ A B, Γ ⊢ A ∧ B → Γ ⊢ B | OrI₁ : ∀ Γ A B, Γ ⊢ A → Γ ⊢ A ∨ B | OrI₂ : ∀ Γ A B, Γ ⊢ B → Γ ⊢ A ∨ B | OrE : ∀ Γ A B C, Γ ⊢ A ∨ B → A::Γ ⊢ C → B::Γ ⊢ C → Γ ⊢ C infix ⊢ := Nc open Nc -- Remark ⌞t⌟ indicates we should not pattern match on t. -- In the following lemma, we only need to pattern match on Γ ⊢ A, -- by pattern matching on A, we would be creating 10*6 cases instead of 10. lemma weakening2 : ∀ {Γ A Δ}, Γ ⊢ A → Γ ⊆ Δ → Δ ⊢ A | Γ ⌞A⌟ Δ (Nax Γ A Hin) Hs := !Nax (Hs A Hin) | Γ ⌞A ⇒ B⌟ Δ (ImpI Γ A B H) Hs := !ImpI (weakening2 H (cons_sub_cons A Hs)) | Γ ⌞B⌟ Δ (ImpE Γ A B H₁ H₂) Hs := !ImpE (weakening2 H₁ Hs) (weakening2 H₂ Hs) | Γ ⌞A⌟ Δ (BotC Γ A H) Hs := !BotC (weakening2 H (cons_sub_cons (~A) Hs)) | Γ ⌞A ∧ B⌟ Δ (AndI Γ A B H₁ H₂) Hs := !AndI (weakening2 H₁ Hs) (weakening2 H₂ Hs) | Γ ⌞A⌟ Δ (AndE₁ Γ A B H) Hs := !AndE₁ (weakening2 H Hs) | Γ ⌞B⌟ Δ (AndE₂ Γ A B H) Hs := !AndE₂ (weakening2 H Hs) | Γ ⌞A ∧ B⌟ Δ (OrI₁ Γ A B H) Hs := !OrI₁ (weakening2 H Hs) | Γ ⌞A ∨ B⌟ Δ (OrI₂ Γ A B H) Hs := !OrI₂ (weakening2 H Hs) | Γ ⌞C⌟ Δ (OrE Γ A B C H₁ H₂ H₃) Hs := !OrE (weakening2 H₁ Hs) (weakening2 H₂ (cons_sub_cons A Hs)) (weakening2 H₃ (cons_sub_cons B Hs)) end PropF