-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Leonardo de Moura, Jeremy Avigad import .connectives ..core.nonempty open inhabited nonempty inductive Exists {A : Type} (P : A → Prop) : Prop := intro : ∀ (a : A), P a → Exists P definition exists_intro := @Exists.intro notation `exists` binders `,` r:(scoped P, Exists P) := r notation `∃` binders `,` r:(scoped P, Exists P) := r theorem exists_elim {A : Type} {p : A → Prop} {B : Prop} (H1 : ∃x, p x) (H2 : ∀ (a : A) (H : p a), B) : B := Exists.rec H2 H1 theorem exists_not_forall {A : Type} {p : A → Prop} (H : ∃x, p x) : ¬∀x, ¬p x := assume H1 : ∀x, ¬p x, obtain (w : A) (Hw : p w), from H, absurd Hw (H1 w) theorem forall_not_exists {A : Type} {p : A → Prop} (H2 : ∀x, p x) : ¬∃x, ¬p x := assume H1 : ∃x, ¬p x, obtain (w : A) (Hw : ¬p w), from H1, absurd (H2 w) Hw definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, y ≠ x → ¬p y notation `∃!` binders `,` r:(scoped P, exists_unique P) := r theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, y ≠ w → ¬p y) : ∃!x, p x := exists_intro w (and.intro H1 H2) theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, y ≠ x → ¬p y) → b) : b := obtain w Hw, from H2, H1 w (and.elim_left Hw) (and.elim_right Hw) theorem forall_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∀x, φ x) ↔ (∀x, ψ x) := iff.intro (assume Hl, take x, iff.elim_left (H x) (Hl x)) (assume Hr, take x, iff.elim_right (H x) (Hr x)) theorem exists_congr {A : Type} {φ ψ : A → Prop} (H : ∀x, φ x ↔ ψ x) : (∃x, φ x) ↔ (∃x, ψ x) := iff.intro (assume Hex, obtain w Pw, from Hex, exists_intro w (iff.elim_left (H w) Pw)) (assume Hex, obtain w Qw, from Hex, exists_intro w (iff.elim_right (H w) Qw)) theorem forall_true_iff_true (A : Type) : (∀x : A, true) ↔ true := iff.intro (assume H, trivial) (assume H, take x, trivial) theorem forall_p_iff_p (A : Type) {H : inhabited A} (p : Prop) : (∀x : A, p) ↔ p := iff.intro (assume Hl, inhabited.destruct H (take x, Hl x)) (assume Hr, take x, Hr) theorem exists_p_iff_p (A : Type) {H : inhabited A} (p : Prop) : (∃x : A, p) ↔ p := iff.intro (assume Hl, obtain a Hp, from Hl, Hp) (assume Hr, inhabited.destruct H (take a, exists_intro a Hr)) theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) : (∀x, φ x ∧ ψ x) ↔ (∀x, φ x) ∧ (∀x, ψ x) := iff.intro (assume H, and.intro (take x, and.elim_left (H x)) (take x, and.elim_right (H x))) (assume H, take x, and.intro (and.elim_left H x) (and.elim_right H x)) theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) : (∃x, φ x ∨ ψ x) ↔ (∃x, φ x) ∨ (∃x, ψ x) := iff.intro (assume H, obtain (w : A) (Hw : φ w ∨ ψ w), from H, or.elim Hw (assume Hw1 : φ w, or.inl (exists_intro w Hw1)) (assume Hw2 : ψ w, or.inr (exists_intro w Hw2))) (assume H, or.elim H (assume H1, obtain (w : A) (Hw : φ w), from H1, exists_intro w (or.inl Hw)) (assume H2, obtain (w : A) (Hw : ψ w), from H2, exists_intro w (or.inr Hw))) theorem exists_imp_nonempty {A : Type} {P : A → Prop} (H : ∃x, P x) : nonempty A := obtain w Hw, from H, nonempty.intro w