Set: pp::colors Set: pp::unicode Assumed: N Assumed: a Assumed: b Assumed: c Assumed: P Assumed: H3 Proved: T1 Proved: T2 Proved: T3 Proved: T4 Theorem T1 : ∃ x y z : N, P x y z := ExistsIntro::explicit N (λ x : N, ∃ y z : N, P x y z) a (ExistsIntro::explicit N (λ x : N, if ((λ x::1 : N, if (P a x x::1) ⊥ ⊤) == (λ x : N, ⊤)) ⊥ ⊤) b (ExistsIntro::explicit N (λ z : N, P a b z) c H3)) Theorem T2 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3)) Theorem T3 : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro b (ExistsIntro c H3)) Theorem T4 (H : P a a b) : ∃ x y z : N, P x y z := ExistsIntro a (ExistsIntro a (ExistsIntro b H))