/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura -/ import data.nat open nat definition partial_sum : nat → nat | 0 := 0 | (succ n) := succ n + partial_sum n example : partial_sum 5 = 15 := rfl example : partial_sum 6 = 21 := rfl lemma two_mul_partial_sum_eq : ∀ n, 2 * partial_sum n = (succ n) * n | 0 := by reflexivity | (succ n) := calc 2 * (succ n + partial_sum n) = 2 * succ n + 2 * partial_sum n : mul.left_distrib ... = 2 * succ n + succ n * n : two_mul_partial_sum_eq ... = 2 * succ n + n * succ n : mul.comm ... = (2 + n) * succ n : mul.right_distrib ... = (n + 2) * succ n : add.comm ... = (succ (succ n)) * succ n : rfl theorem partial_sum_eq : ∀ n, partial_sum n = ((n + 1) * n) div 2 := take n, assert h₁ : (2 * partial_sum n) div 2 = ((succ n) * n) div 2, by rewrite two_mul_partial_sum_eq, assert h₂ : (2:nat) > 0, from dec_trivial, by rewrite [mul_div_cancel_left _ h₂ at h₁]; exact h₁