/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura Hereditarily finite sets: finite sets whose elements are all hereditarily finite sets. Remark: all definitions compute, however the performace is quite poor since we implement this module using a bijection from (finset nat) to nat, and this bijection is implemeted using the Ackermann coding. -/ import data.nat data.finset.equiv open nat binary open -[notations]finset definition hf := nat namespace hf protected definition prio : num := num.succ std.priority.default protected definition has_decidable_eq [instance] : decidable_eq hf := nat.has_decidable_eq definition of_finset (s : finset hf) : hf := @equiv.to_fun _ _ finset_nat_equiv_nat s definition to_finset (h : hf) : finset hf := @equiv.inv _ _ finset_nat_equiv_nat h definition to_nat (h : hf) : nat := h definition of_nat (n : nat) : hf := n lemma to_finset_of_finset (s : finset hf) : to_finset (of_finset s) = s := @equiv.left_inv _ _ finset_nat_equiv_nat s lemma of_finset_to_finset (s : hf) : of_finset (to_finset s) = s := @equiv.right_inv _ _ finset_nat_equiv_nat s lemma to_finset_inj {s₁ s₂ : hf} : to_finset s₁ = to_finset s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse of_finset_to_finset h lemma of_finset_inj {s₁ s₂ : finset hf} : of_finset s₁ = of_finset s₂ → s₁ = s₂ := λ h, function.injective_of_left_inverse to_finset_of_finset h /- empty -/ definition empty : hf := of_finset (finset.empty) notation `∅` := hf.empty /- insert -/ definition insert (a s : hf) : hf := of_finset (finset.insert a (to_finset s)) /- mem -/ definition mem (a : hf) (s : hf) : Prop := finset.mem a (to_finset s) infix `∈` := mem definition not_mem (a : hf) (s : hf) : Prop := ¬ a ∈ s infix `∉` := not_mem lemma not_mem_empty (a : hf) : a ∉ ∅ := begin unfold [not_mem, mem, empty], rewrite to_finset_of_finset, apply finset.not_mem_empty end lemma mem_insert (a s : hf) : a ∈ insert a s := begin unfold [mem, insert], rewrite to_finset_of_finset, apply finset.mem_insert end lemma mem_insert_of_mem (a b s : hf) : a ∈ s → a ∈ insert b s := begin unfold [mem, insert], intros, rewrite to_finset_of_finset, apply finset.mem_insert_of_mem, assumption end lemma eq_or_mem_of_mem_insert (a b s : hf) : a ∈ insert b s → a = b ∨ a ∈ s := begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply eq_or_mem_of_mem_insert, assumption end theorem mem_of_mem_insert_of_ne {x a : hf} {s : hf} : x ∈ insert a s → x ≠ a → x ∈ s := begin unfold [mem, insert], rewrite to_finset_of_finset, intros, apply mem_of_mem_insert_of_ne, repeat assumption end protected theorem ext {s₁ s₂ : hf} : (∀ a, a ∈ s₁ ↔ a ∈ s₂) → s₁ = s₂ := assume h, assert to_finset s₁ = to_finset s₂, from finset.ext h, assert of_finset (to_finset s₁) = of_finset (to_finset s₂), by rewrite this, by rewrite [*of_finset_to_finset at this]; exact this theorem insert_eq_of_mem {a : hf} {s : hf} : a ∈ s → insert a s = s := begin unfold mem, intro h, unfold [mem, insert], rewrite (finset.insert_eq_of_mem h), rewrite of_finset_to_finset end /- union -/ definition union (s₁ s₂ : hf) : hf := of_finset (finset.union (to_finset s₁) (to_finset s₂)) infix [priority hf.prio] ∪ := union theorem mem_union_left {a : hf} {s₁ : hf} (s₂ : hf) : a ∈ s₁ → a ∈ s₁ ∪ s₂ := begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_left _ h end theorem mem_union_l {a : hf} {s₁ : hf} {s₂ : hf} : a ∈ s₁ → a ∈ s₁ ∪ s₂ := mem_union_left s₂ theorem mem_union_right {a : hf} {s₂ : hf} (s₁ : hf) : a ∈ s₂ → a ∈ s₁ ∪ s₂ := begin unfold mem, intro h, unfold union, rewrite to_finset_of_finset, apply finset.mem_union_right _ h end theorem mem_union_r {a : hf} {s₂ : hf} {s₁ : hf} : a ∈ s₂ → a ∈ s₁ ∪ s₂ := mem_union_right s₁ theorem mem_or_mem_of_mem_union {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∪ s₂ → a ∈ s₁ ∨ a ∈ s₂ := begin unfold [mem, union], rewrite to_finset_of_finset, intro h, apply finset.mem_or_mem_of_mem_union h end theorem mem_union_iff {a : hf} (s₁ s₂ : hf) : a ∈ s₁ ∪ s₂ ↔ a ∈ s₁ ∨ a ∈ s₂ := iff.intro (λ h, mem_or_mem_of_mem_union h) (λ d, or.elim d (λ i, mem_union_left _ i) (λ i, mem_union_right _ i)) theorem mem_union_eq {a : hf} (s₁ s₂ : hf) : (a ∈ s₁ ∪ s₂) = (a ∈ s₁ ∨ a ∈ s₂) := propext !mem_union_iff theorem union.comm (s₁ s₂ : hf) : s₁ ∪ s₂ = s₂ ∪ s₁ := hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.comm) theorem union.assoc (s₁ s₂ s₃ : hf) : (s₁ ∪ s₂) ∪ s₃ = s₁ ∪ (s₂ ∪ s₃) := hf.ext (λ a, by rewrite [*mem_union_eq]; exact or.assoc) theorem union.left_comm (s₁ s₂ s₃ : hf) : s₁ ∪ (s₂ ∪ s₃) = s₂ ∪ (s₁ ∪ s₃) := !left_comm union.comm union.assoc s₁ s₂ s₃ theorem union.right_comm (s₁ s₂ s₃ : hf) : (s₁ ∪ s₂) ∪ s₃ = (s₁ ∪ s₃) ∪ s₂ := !right_comm union.comm union.assoc s₁ s₂ s₃ theorem union_self (s : hf) : s ∪ s = s := hf.ext (λ a, iff.intro (λ ain, or.elim (mem_or_mem_of_mem_union ain) (λ i, i) (λ i, i)) (λ i, mem_union_left _ i)) theorem union_empty (s : hf) : s ∪ ∅ = s := hf.ext (λ a, iff.intro (suppose a ∈ s ∪ ∅, or.elim (mem_or_mem_of_mem_union this) (λ i, i) (λ i, absurd i !not_mem_empty)) (suppose a ∈ s, mem_union_left _ this)) theorem empty_union (s : hf) : ∅ ∪ s = s := calc ∅ ∪ s = s ∪ ∅ : union.comm ... = s : union_empty /- inter -/ definition inter (s₁ s₂ : hf) : hf := of_finset (finset.inter (to_finset s₁) (to_finset s₂)) infix [priority hf.prio] ∩ := inter theorem mem_of_mem_inter_left {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₁ := begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_left h end theorem mem_of_mem_inter_right {a : hf} {s₁ s₂ : hf} : a ∈ s₁ ∩ s₂ → a ∈ s₂ := begin unfold mem, unfold inter, rewrite to_finset_of_finset, intro h, apply finset.mem_of_mem_inter_right h end theorem mem_inter {a : hf} {s₁ s₂ : hf} : a ∈ s₁ → a ∈ s₂ → a ∈ s₁ ∩ s₂ := begin unfold mem, intro h₁ h₂, unfold inter, rewrite to_finset_of_finset, apply finset.mem_inter h₁ h₂ end theorem mem_inter_iff (a : hf) (s₁ s₂ : hf) : a ∈ s₁ ∩ s₂ ↔ a ∈ s₁ ∧ a ∈ s₂ := iff.intro (λ h, and.intro (mem_of_mem_inter_left h) (mem_of_mem_inter_right h)) (λ h, mem_inter (and.elim_left h) (and.elim_right h)) theorem mem_inter_eq (a : hf) (s₁ s₂ : hf) : (a ∈ s₁ ∩ s₂) = (a ∈ s₁ ∧ a ∈ s₂) := propext !mem_inter_iff theorem inter.comm (s₁ s₂ : hf) : s₁ ∩ s₂ = s₂ ∩ s₁ := hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.comm) theorem inter.assoc (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = s₁ ∩ (s₂ ∩ s₃) := hf.ext (λ a, by rewrite [*mem_inter_eq]; exact and.assoc) theorem inter.left_comm (s₁ s₂ s₃ : hf) : s₁ ∩ (s₂ ∩ s₃) = s₂ ∩ (s₁ ∩ s₃) := !left_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter.right_comm (s₁ s₂ s₃ : hf) : (s₁ ∩ s₂) ∩ s₃ = (s₁ ∩ s₃) ∩ s₂ := !right_comm inter.comm inter.assoc s₁ s₂ s₃ theorem inter_self (s : hf) : s ∩ s = s := hf.ext (λ a, iff.intro (λ h, mem_of_mem_inter_right h) (λ h, mem_inter h h)) theorem inter_empty (s : hf) : s ∩ ∅ = ∅ := hf.ext (λ a, iff.intro (suppose a ∈ s ∩ ∅, absurd (mem_of_mem_inter_right this) !not_mem_empty) (suppose a ∈ ∅, absurd this !not_mem_empty)) theorem empty_inter (s : hf) : ∅ ∩ s = ∅ := calc ∅ ∩ s = s ∩ ∅ : inter.comm ... = ∅ : inter_empty /- card -/ definition card (s : hf) : nat := finset.card (to_finset s) theorem card_empty : card ∅ = 0 := rfl lemma ne_empty_of_card_eq_succ {s : hf} {n : nat} : card s = succ n → s ≠ ∅ := by intros; substvars; contradiction /- erase -/ definition erase (a : hf) (s : hf) : hf := of_finset (erase a (to_finset s)) theorem mem_erase (a : hf) (s : hf) : a ∉ erase a s := begin unfold [not_mem, mem, erase], rewrite to_finset_of_finset, apply finset.mem_erase end theorem card_erase_of_mem {a : hf} {s : hf} : a ∈ s → card (erase a s) = pred (card s) := begin unfold mem, intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_mem h end theorem card_erase_of_not_mem {a : hf} {s : hf} : a ∉ s → card (erase a s) = card s := begin unfold [not_mem, mem], intro h, unfold [erase, card], rewrite to_finset_of_finset, apply finset.card_erase_of_not_mem h end theorem erase_empty (a : hf) : erase a ∅ = ∅ := rfl theorem ne_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ≠ a := by intro h beqa; subst b; exact absurd h !mem_erase theorem mem_of_mem_erase {a b : hf} {s : hf} : b ∈ erase a s → b ∈ s := begin unfold [erase, mem], rewrite to_finset_of_finset, intro h, apply mem_of_mem_erase h end theorem mem_erase_of_ne_of_mem {a b : hf} {s : hf} : a ≠ b → a ∈ s → a ∈ erase b s := begin intro h₁, unfold mem, intro h₂, unfold erase, rewrite to_finset_of_finset, apply mem_erase_of_ne_of_mem h₁ h₂ end theorem mem_erase_iff (a b : hf) (s : hf) : a ∈ erase b s ↔ a ∈ s ∧ a ≠ b := iff.intro (assume H, and.intro (mem_of_mem_erase H) (ne_of_mem_erase H)) (assume H, mem_erase_of_ne_of_mem (and.right H) (and.left H)) theorem mem_erase_eq (a b : hf) (s : hf) : a ∈ erase b s = (a ∈ s ∧ a ≠ b) := propext !mem_erase_iff theorem erase_insert {a : hf} {s : hf} : a ∉ s → erase a (insert a s) = s := begin unfold [not_mem, mem, erase, insert], intro h, rewrite [to_finset_of_finset, finset.erase_insert h, of_finset_to_finset] end theorem insert_erase {a : hf} {s : hf} : a ∈ s → insert a (erase a s) = s := begin unfold mem, intro h, unfold [insert, erase], rewrite [to_finset_of_finset, finset.insert_erase h, of_finset_to_finset] end /- subset -/ definition subset (s₁ s₂ : hf) : Prop := finset.subset (to_finset s₁) (to_finset s₂) infix [priority hf.prio] `⊆` := subset theorem empty_subset (s : hf) : ∅ ⊆ s := begin unfold [empty, subset], rewrite to_finset_of_finset, apply finset.empty_subset (to_finset s) end theorem subset.refl (s : hf) : s ⊆ s := begin unfold [subset], apply finset.subset.refl (to_finset s) end theorem subset.trans {s₁ s₂ s₃ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₃ → s₁ ⊆ s₃ := begin unfold [subset], intro h₁ h₂, apply finset.subset.trans h₁ h₂ end theorem mem_of_subset_of_mem {s₁ s₂ : hf} {a : hf} : s₁ ⊆ s₂ → a ∈ s₁ → a ∈ s₂ := begin unfold [subset, mem], intro h₁ h₂, apply finset.mem_of_subset_of_mem h₁ h₂ end theorem subset.antisymm {s₁ s₂ : hf} : s₁ ⊆ s₂ → s₂ ⊆ s₁ → s₁ = s₂ := begin unfold [subset], intro h₁ h₂, apply to_finset_inj (finset.subset.antisymm h₁ h₂) end -- alternative name theorem eq_of_subset_of_subset {s₁ s₂ : hf} (H₁ : s₁ ⊆ s₂) (H₂ : s₂ ⊆ s₁) : s₁ = s₂ := subset.antisymm H₁ H₂ theorem subset_of_forall {s₁ s₂ : hf} : (∀x, x ∈ s₁ → x ∈ s₂) → s₁ ⊆ s₂ := begin unfold [mem, subset], intro h, apply finset.subset_of_forall h end theorem subset_insert (s : hf) (a : hf) : s ⊆ insert a s := begin unfold [subset, insert], rewrite to_finset_of_finset, apply finset.subset_insert (to_finset s) end theorem eq_empty_of_subset_empty {x : hf} (H : x ⊆ ∅) : x = ∅ := subset.antisymm H (empty_subset x) theorem subset_empty_iff (x : hf) : x ⊆ ∅ ↔ x = ∅ := iff.intro eq_empty_of_subset_empty (take xeq, by rewrite xeq; apply subset.refl ∅) theorem erase_subset_erase (a : hf) {s t : hf} : s ⊆ t → erase a s ⊆ erase a t := begin unfold [subset, erase], intro h, rewrite *to_finset_of_finset, apply finset.erase_subset_erase a h end theorem erase_subset (a : hf) (s : hf) : erase a s ⊆ s := begin unfold [subset, erase], rewrite to_finset_of_finset, apply finset.erase_subset a (to_finset s) end theorem erase_eq_of_not_mem {a : hf} {s : hf} : a ∉ s → erase a s = s := begin unfold [not_mem, mem, erase], intro h, rewrite [finset.erase_eq_of_not_mem h, of_finset_to_finset] end theorem erase_insert_subset (a : hf) (s : hf) : erase a (insert a s) ⊆ s := begin unfold [erase, insert, subset], rewrite [*to_finset_of_finset], apply finset.erase_insert_subset a (to_finset s) end theorem erase_subset_of_subset_insert {a : hf} {s t : hf} (H : s ⊆ insert a t) : erase a s ⊆ t := hf.subset.trans (!hf.erase_subset_erase H) (erase_insert_subset a t) theorem insert_erase_subset (a : hf) (s : hf) : s ⊆ insert a (erase a s) := decidable.by_cases (assume ains : a ∈ s, by rewrite [!insert_erase ains]; apply subset.refl) (assume nains : a ∉ s, by rewrite[erase_eq_of_not_mem nains]; apply subset_insert) theorem insert_subset_insert (a : hf) {s t : hf} : s ⊆ t → insert a s ⊆ insert a t := begin unfold [subset, insert], intro h, rewrite *to_finset_of_finset, apply finset.insert_subset_insert a h end theorem subset_insert_of_erase_subset {s t : hf} {a : hf} (H : erase a s ⊆ t) : s ⊆ insert a t := subset.trans (insert_erase_subset a s) (!insert_subset_insert H) theorem subset_insert_iff (s t : hf) (a : hf) : s ⊆ insert a t ↔ erase a s ⊆ t := iff.intro !erase_subset_of_subset_insert !subset_insert_of_erase_subset end hf