/- Copyright (c) 2015 Leonardo de Moura. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Haitao Zhang, Floris van Doorn List combinators. -/ import data.list.basic data.equiv open nat prod decidable function helper_tactics namespace list variables {A B C : Type} section replicate -- 'replicate i n' returns the list contain i copies of n. definition replicate : ℕ → A → list A | 0 a := [] | (succ n) a := a :: replicate n a theorem length_replicate : ∀ (i : ℕ) (a : A), length (replicate i a) = i | 0 a := rfl | (succ i) a := calc length (replicate (succ i) a) = length (replicate i a) + 1 : rfl ... = i + 1 : length_replicate end replicate /- map -/ definition map (f : A → B) : list A → list B | [] := [] | (a :: l) := f a :: map l theorem map_nil (f : A → B) : map f [] = [] theorem map_cons (f : A → B) (a : A) (l : list A) : map f (a :: l) = f a :: map f l lemma map_concat (f : A → B) (a : A) : Πl, map f (concat a l) = concat (f a) (map f l) | nil := rfl | (b::l) := begin rewrite [concat_cons, +map_cons, concat_cons, map_concat] end lemma map_append (f : A → B) : ∀ l₁ l₂, map f (l₁++l₂) = (map f l₁)++(map f l₂) | nil := take l, rfl | (a::l) := take l', begin rewrite [append_cons, *map_cons, append_cons, map_append] end lemma map_reverse (f : A → B) : Πl, map f (reverse l) = reverse (map f l) | nil := rfl | (b::l) := begin rewrite [reverse_cons, +map_cons, reverse_cons, map_concat, map_reverse] end lemma map_singleton (f : A → B) (a : A) : map f [a] = [f a] := rfl theorem map_id [simp] : ∀ l : list A, map id l = l | [] := rfl | (x::xs) := begin rewrite [map_cons, map_id] end theorem map_id' {f : A → A} (H : ∀x, f x = x) : ∀ l : list A, map f l = l | [] := rfl | (x::xs) := begin rewrite [map_cons, H, map_id'] end theorem map_map [simp] (g : B → C) (f : A → B) : ∀ l, map g (map f l) = map (g ∘ f) l | [] := rfl | (a :: l) := show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l), by rewrite (map_map l) theorem length_map [simp] (f : A → B) : ∀ l : list A, length (map f l) = length l | [] := by esimp | (a :: l) := show length (map f l) + 1 = length l + 1, by rewrite (length_map l) theorem map_ne_nil_of_ne_nil (f : A → B) {l : list A} (H : l ≠ nil) : map f l ≠ nil := suppose map f l = nil, have length (map f l) = length l, from !length_map, have 0 = length l, from calc 0 = length nil : length_nil ... = length (map f l) : {eq.symm `map f l = nil`} ... = length l : this, have l = nil, from eq_nil_of_length_eq_zero (eq.symm this), H this theorem mem_map {A B : Type} (f : A → B) : ∀ {a l}, a ∈ l → f a ∈ map f l | a [] i := absurd i !not_mem_nil | a (x::xs) i := or.elim (eq_or_mem_of_mem_cons i) (suppose a = x, by rewrite [this, map_cons]; apply mem_cons) (suppose a ∈ xs, or.inr (mem_map this)) theorem exists_of_mem_map {A B : Type} {f : A → B} {b : B} : ∀{l}, b ∈ map f l → ∃a, a ∈ l ∧ f a = b | [] H := false.elim H | (c::l) H := or.elim (iff.mp !mem_cons_iff H) (suppose b = f c, exists.intro c (and.intro !mem_cons (eq.symm this))) (suppose b ∈ map f l, obtain a (Hl : a ∈ l) (Hr : f a = b), from exists_of_mem_map this, exists.intro a (and.intro (mem_cons_of_mem _ Hl) Hr)) theorem eq_of_map_const {A B : Type} {b₁ b₂ : B} : ∀ {l : list A}, b₁ ∈ map (const A b₂) l → b₁ = b₂ | [] h := absurd h !not_mem_nil | (a::l) h := or.elim (eq_or_mem_of_mem_cons h) (suppose b₁ = b₂, this) (suppose b₁ ∈ map (const A b₂) l, eq_of_map_const this) definition map₂ (f : A → B → C) : list A → list B → list C | [] _ := [] | _ [] := [] | (x::xs) (y::ys) := f x y :: map₂ xs ys theorem map₂_nil1 (f : A → B → C) : ∀ (l : list B), map₂ f [] l = [] | [] := rfl | (a::y) := rfl theorem map₂_nil2 (f : A → B → C) : ∀ (l : list A), map₂ f l [] = [] | [] := rfl | (a::y) := rfl theorem length_map₂ : ∀(f : A → B → C) x y, length (map₂ f x y) = min (length x) (length y) | f [] [] := rfl | f (xh::xr) [] := rfl | f [] (yh::yr) := rfl | f (xh::xr) (yh::yr) := calc length (map₂ f (xh::xr) (yh::yr)) = length (map₂ f xr yr) + 1 : rfl ... = min (length xr) (length yr) + 1 : length_map₂ ... = min (length (xh::xr)) (length (yh::yr)) : min_succ_succ /- filter -/ definition filter (p : A → Prop) [h : decidable_pred p] : list A → list A | [] := [] | (a::l) := if p a then a :: filter l else filter l theorem filter_nil [simp] (p : A → Prop) [h : decidable_pred p] : filter p [] = [] theorem filter_cons_of_pos [simp] {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ l, p a → filter p (a::l) = a :: filter p l := λ l pa, if_pos pa theorem filter_cons_of_neg [simp] {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ l, ¬ p a → filter p (a::l) = filter p l := λ l pa, if_neg pa theorem of_mem_filter {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l}, a ∈ filter p l → p a | [] ain := absurd ain !not_mem_nil | (b::l) ain := by_cases (assume pb : p b, have a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain, or.elim (eq_or_mem_of_mem_cons this) (suppose a = b, by rewrite [-this at pb]; exact pb) (suppose a ∈ filter p l, of_mem_filter this)) (suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (of_mem_filter ain)) theorem mem_of_mem_filter {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l}, a ∈ filter p l → a ∈ l | [] ain := absurd ain !not_mem_nil | (b::l) ain := by_cases (λ pb : p b, have a ∈ b :: filter p l, by rewrite [filter_cons_of_pos _ pb at ain]; exact ain, or.elim (eq_or_mem_of_mem_cons this) (suppose a = b, by rewrite this; exact !mem_cons) (suppose a ∈ filter p l, mem_cons_of_mem _ (mem_of_mem_filter this))) (suppose ¬ p b, by rewrite [filter_cons_of_neg _ this at ain]; exact (mem_cons_of_mem _ (mem_of_mem_filter ain))) theorem mem_filter_of_mem {p : A → Prop} [h : decidable_pred p] {a : A} : ∀ {l}, a ∈ l → p a → a ∈ filter p l | [] ain pa := absurd ain !not_mem_nil | (b::l) ain pa := by_cases (λ pb : p b, or.elim (eq_or_mem_of_mem_cons ain) (λ aeqb : a = b, by rewrite [filter_cons_of_pos _ pb, aeqb]; exact !mem_cons) (λ ainl : a ∈ l, by rewrite [filter_cons_of_pos _ pb]; exact (mem_cons_of_mem _ (mem_filter_of_mem ainl pa)))) (λ npb : ¬ p b, or.elim (eq_or_mem_of_mem_cons ain) (λ aeqb : a = b, absurd (eq.rec_on aeqb pa) npb) (λ ainl : a ∈ l, by rewrite [filter_cons_of_neg _ npb]; exact (mem_filter_of_mem ainl pa))) theorem filter_sub [simp] {p : A → Prop} [h : decidable_pred p] (l : list A) : filter p l ⊆ l := λ a ain, mem_of_mem_filter ain theorem filter_append {p : A → Prop} [h : decidable_pred p] : ∀ (l₁ l₂ : list A), filter p (l₁++l₂) = filter p l₁ ++ filter p l₂ | [] l₂ := rfl | (a::l₁) l₂ := by_cases (suppose p a, by rewrite [append_cons, *filter_cons_of_pos _ this, filter_append]) (suppose ¬ p a, by rewrite [append_cons, *filter_cons_of_neg _ this, filter_append]) /- foldl & foldr -/ definition foldl (f : A → B → A) : A → list B → A | a [] := a | a (b :: l) := foldl (f a b) l theorem foldl_nil [simp] (f : A → B → A) (a : A) : foldl f a [] = a theorem foldl_cons [simp] (f : A → B → A) (a : A) (b : B) (l : list B) : foldl f a (b::l) = foldl f (f a b) l definition foldr (f : A → B → B) : B → list A → B | b [] := b | b (a :: l) := f a (foldr b l) theorem foldr_nil [simp] (f : A → B → B) (b : B) : foldr f b [] = b theorem foldr_cons [simp] (f : A → B → B) (b : B) (a : A) (l : list A) : foldr f b (a::l) = f a (foldr f b l) section foldl_eq_foldr -- foldl and foldr coincide when f is commutative and associative parameters {α : Type} {f : α → α → α} hypothesis (Hcomm : ∀ a b, f a b = f b a) hypothesis (Hassoc : ∀ a b c, f (f a b) c = f a (f b c)) include Hcomm Hassoc theorem foldl_eq_of_comm_of_assoc : ∀ a b l, foldl f a (b::l) = f b (foldl f a l) | a b nil := Hcomm a b | a b (c::l) := begin change foldl f (f (f a b) c) l = f b (foldl f (f a c) l), rewrite -foldl_eq_of_comm_of_assoc, change foldl f (f (f a b) c) l = foldl f (f (f a c) b) l, have H₁ : f (f a b) c = f (f a c) b, by rewrite [Hassoc, Hassoc, Hcomm b c], rewrite H₁ end theorem foldl_eq_foldr : ∀ a l, foldl f a l = foldr f a l | a nil := rfl | a (b :: l) := begin rewrite foldl_eq_of_comm_of_assoc, esimp, change f b (foldl f a l) = f b (foldr f a l), rewrite foldl_eq_foldr end end foldl_eq_foldr theorem foldl_append [simp] (f : B → A → B) : ∀ (b : B) (l₁ l₂ : list A), foldl f b (l₁++l₂) = foldl f (foldl f b l₁) l₂ | b [] l₂ := rfl | b (a::l₁) l₂ := by rewrite [append_cons, *foldl_cons, foldl_append] theorem foldr_append [simp] (f : A → B → B) : ∀ (b : B) (l₁ l₂ : list A), foldr f b (l₁++l₂) = foldr f (foldr f b l₂) l₁ | b [] l₂ := rfl | b (a::l₁) l₂ := by rewrite [append_cons, *foldr_cons, foldr_append] /- all & any -/ definition all (l : list A) (p : A → Prop) : Prop := foldr (λ a r, p a ∧ r) true l definition any (l : list A) (p : A → Prop) : Prop := foldr (λ a r, p a ∨ r) false l theorem all_nil_eq [simp] (p : A → Prop) : all [] p = true theorem all_nil (p : A → Prop) : all [] p := trivial theorem all_cons_eq (p : A → Prop) (a : A) (l : list A) : all (a::l) p = (p a ∧ all l p) theorem all_cons {p : A → Prop} {a : A} {l : list A} (H1 : p a) (H2 : all l p) : all (a::l) p := and.intro H1 H2 theorem all_of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → all l p := assume h, by rewrite [all_cons_eq at h]; exact (and.elim_right h) theorem of_all_cons {p : A → Prop} {a : A} {l : list A} : all (a::l) p → p a := assume h, by rewrite [all_cons_eq at h]; exact (and.elim_left h) theorem all_cons_of_all {p : A → Prop} {a : A} {l : list A} : p a → all l p → all (a::l) p := assume pa alllp, and.intro pa alllp theorem all_implies {p q : A → Prop} : ∀ {l}, all l p → (∀ x, p x → q x) → all l q | [] h₁ h₂ := trivial | (a::l) h₁ h₂ := have all l q, from all_implies (all_of_all_cons h₁) h₂, have q a, from h₂ a (of_all_cons h₁), all_cons_of_all this `all l q` theorem of_mem_of_all {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → all l p → p a | [] h₁ h₂ := absurd h₁ !not_mem_nil | (b::l) h₁ h₂ := or.elim (eq_or_mem_of_mem_cons h₁) (suppose a = b, by rewrite [all_cons_eq at h₂, -this at h₂]; exact (and.elim_left h₂)) (suppose a ∈ l, have all l p, by rewrite [all_cons_eq at h₂]; exact (and.elim_right h₂), of_mem_of_all `a ∈ l` this) theorem all_of_forall {p : A → Prop} : ∀ {l}, (∀a, a ∈ l → p a) → all l p | [] H := !all_nil | (a::l) H := all_cons (H a !mem_cons) (all_of_forall (λ a' H', H a' (mem_cons_of_mem _ H'))) theorem any_nil [simp] (p : A → Prop) : any [] p = false theorem any_cons [simp] (p : A → Prop) (a : A) (l : list A) : any (a::l) p = (p a ∨ any l p) theorem any_of_mem {p : A → Prop} {a : A} : ∀ {l}, a ∈ l → p a → any l p | [] i h := absurd i !not_mem_nil | (b::l) i h := or.elim (eq_or_mem_of_mem_cons i) (suppose a = b, by rewrite [-this]; exact (or.inl h)) (suppose a ∈ l, have any l p, from any_of_mem this h, or.inr this) theorem exists_of_any {p : A → Prop} : ∀{l : list A}, any l p → ∃a, a ∈ l ∧ p a | [] H := false.elim H | (b::l) H := or.elim H (assume H1 : p b, exists.intro b (and.intro !mem_cons H1)) (assume H1 : any l p, obtain a (H2l : a ∈ l) (H2r : p a), from exists_of_any H1, exists.intro a (and.intro (mem_cons_of_mem b H2l) H2r)) definition decidable_all (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (all l p) | [] := decidable_true | (a :: l) := match H a with | inl Hp₁ := match decidable_all l with | inl Hp₂ := inl (and.intro Hp₁ Hp₂) | inr Hn₂ := inr (not_and_of_not_right (p a) Hn₂) end | inr Hn := inr (not_and_of_not_left (all l p) Hn) end definition decidable_any (p : A → Prop) [H : decidable_pred p] : ∀ l, decidable (any l p) | [] := decidable_false | (a :: l) := match H a with | inl Hp := inl (or.inl Hp) | inr Hn₁ := match decidable_any l with | inl Hp₂ := inl (or.inr Hp₂) | inr Hn₂ := inr (not_or Hn₁ Hn₂) end end /- zip & unzip -/ definition zip (l₁ : list A) (l₂ : list B) : list (A × B) := map₂ (λ a b, (a, b)) l₁ l₂ definition unzip : list (A × B) → list A × list B | [] := ([], []) | ((a, b) :: l) := match unzip l with | (la, lb) := (a :: la, b :: lb) end theorem unzip_nil [simp] : unzip (@nil (A × B)) = ([], []) theorem unzip_cons [simp] (a : A) (b : B) (l : list (A × B)) : unzip ((a, b) :: l) = match unzip l with (la, lb) := (a :: la, b :: lb) end := rfl theorem zip_unzip : ∀ (l : list (A × B)), zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l | [] := rfl | ((a, b) :: l) := begin rewrite unzip_cons, have r : zip (pr₁ (unzip l)) (pr₂ (unzip l)) = l, from zip_unzip l, revert r, eapply prod.cases_on (unzip l), intro la lb r, rewrite -r end section mapAccumR variable {S : Type} -- This runs a function over a list returning the intermediate results and a -- a final result. definition mapAccumR : (A → S → S × B) → list A → S → (S × list B) | f [] c := (c, []) | f (y::yr) c := let r := mapAccumR f yr c in let z := f y (pr₁ r) in (pr₁ z, pr₂ z :: pr₂ r) theorem length_mapAccumR : ∀ (f : A → S → S × B) (x : list A) (s : S), length (pr₂ (mapAccumR f x s)) = length x | f (a::x) s := calc length (pr₂ (mapAccumR f (a::x) s)) = length x + 1 : { length_mapAccumR f x s } ... = length (a::x) : rfl | f [] s := calc length (pr₂ (mapAccumR f [] s)) = 0 : rfl end mapAccumR section mapAccumR₂ variable {S : Type} -- This runs a function over two lists returning the intermediate results and a -- a final result. definition mapAccumR₂ : (A → B → S → S × C) → list A → list B → S → S × list C | f [] _ c := (c,[]) | f _ [] c := (c,[]) | f (x::xr) (y::yr) c := let r := mapAccumR₂ f xr yr c in let q := f x y (pr₁ r) in (pr₁ q, pr₂ q :: (pr₂ r)) theorem length_mapAccumR₂ : ∀ (f : A → B → S → S × C) (x : list A) (y : list B) (c : S), length (pr₂ (mapAccumR₂ f x y c)) = min (length x) (length y) | f (a::x) (b::y) c := calc length (pr₂ (mapAccumR₂ f (a::x) (b::y) c)) = length (pr₂ (mapAccumR₂ f x y c)) + 1 : rfl ... = min (length x) (length y) + 1 : length_mapAccumR₂ f x y c ... = min (length (a::x)) (length (b::y)) : min_succ_succ | f (a::x) [] c := rfl | f [] (b::y) c := rfl | f [] [] c := rfl end mapAccumR₂ /- flat -/ definition flat (l : list (list A)) : list A := foldl append nil l /- product -/ section product definition product : list A → list B → list (A × B) | [] l₂ := [] | (a::l₁) l₂ := map (λ b, (a, b)) l₂ ++ product l₁ l₂ theorem nil_product (l : list B) : product (@nil A) l = [] theorem product_cons (a : A) (l₁ : list A) (l₂ : list B) : product (a::l₁) l₂ = map (λ b, (a, b)) l₂ ++ product l₁ l₂ theorem product_nil : ∀ (l : list A), product l (@nil B) = [] | [] := rfl | (a::l) := by rewrite [product_cons, map_nil, product_nil] theorem eq_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → a₁ = a := assume ain, have pr1 (a₁, b₁) ∈ map pr1 (map (λ b, (a, b)) l), from mem_map pr1 ain, have a₁ ∈ map (λb, a) l, by revert this; rewrite [map_map, ↑pr1]; intro this; assumption, eq_of_map_const this theorem mem_of_mem_map_pair₁ {a₁ a : A} {b₁ : B} {l : list B} : (a₁, b₁) ∈ map (λ b, (a, b)) l → b₁ ∈ l := assume ain, have pr2 (a₁, b₁) ∈ map pr2 (map (λ b, (a, b)) l), from mem_map pr2 ain, have b₁ ∈ map (λx, x) l, by rewrite [map_map at this, ↑pr2 at this]; exact this, by rewrite [map_id at this]; exact this theorem mem_product {a : A} {b : B} : ∀ {l₁ l₂}, a ∈ l₁ → b ∈ l₂ → (a, b) ∈ product l₁ l₂ | [] l₂ h₁ h₂ := absurd h₁ !not_mem_nil | (x::l₁) l₂ h₁ h₂ := or.elim (eq_or_mem_of_mem_cons h₁) (assume aeqx : a = x, have (a, b) ∈ map (λ b, (a, b)) l₂, from mem_map _ h₂, begin rewrite [-aeqx, product_cons], exact mem_append_left _ this end) (assume ainl₁ : a ∈ l₁, have (a, b) ∈ product l₁ l₂, from mem_product ainl₁ h₂, begin rewrite [product_cons], exact mem_append_right _ this end) theorem mem_of_mem_product_left {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ product l₁ l₂ → a ∈ l₁ | [] l₂ h := absurd h !not_mem_nil | (x::l₁) l₂ h := or.elim (mem_or_mem_of_mem_append h) (suppose (a, b) ∈ map (λ b, (x, b)) l₂, have a = x, from eq_of_mem_map_pair₁ this, by rewrite this; exact !mem_cons) (suppose (a, b) ∈ product l₁ l₂, have a ∈ l₁, from mem_of_mem_product_left this, mem_cons_of_mem _ this) theorem mem_of_mem_product_right {a : A} {b : B} : ∀ {l₁ l₂}, (a, b) ∈ product l₁ l₂ → b ∈ l₂ | [] l₂ h := absurd h !not_mem_nil | (x::l₁) l₂ h := or.elim (mem_or_mem_of_mem_append h) (suppose (a, b) ∈ map (λ b, (x, b)) l₂, mem_of_mem_map_pair₁ this) (suppose (a, b) ∈ product l₁ l₂, mem_of_mem_product_right this) theorem length_product : ∀ (l₁ : list A) (l₂ : list B), length (product l₁ l₂) = length l₁ * length l₂ | [] l₂ := by rewrite [length_nil, zero_mul] | (x::l₁) l₂ := have length (product l₁ l₂) = length l₁ * length l₂, from length_product l₁ l₂, by rewrite [product_cons, length_append, length_cons, length_map, this, right_distrib, one_mul, add.comm] end product -- new for list/comb dependent map theory definition dinj₁ (p : A → Prop) (f : Π a, p a → B) := ∀ ⦃a1 a2⦄ (h1 : p a1) (h2 : p a2), a1 ≠ a2 → (f a1 h1) ≠ (f a2 h2) definition dinj (p : A → Prop) (f : Π a, p a → B) := ∀ ⦃a1 a2⦄ (h1 : p a1) (h2 : p a2), (f a1 h1) = (f a2 h2) → a1 = a2 definition dmap (p : A → Prop) [h : decidable_pred p] (f : Π a, p a → B) : list A → list B | [] := [] | (a::l) := if P : (p a) then cons (f a P) (dmap l) else (dmap l) -- properties of dmap section dmap variable {p : A → Prop} variable [h : decidable_pred p] include h variable {f : Π a, p a → B} lemma dmap_nil : dmap p f [] = [] := rfl lemma dmap_cons_of_pos {a : A} (P : p a) : ∀ l, dmap p f (a::l) = (f a P) :: dmap p f l := λ l, dif_pos P lemma dmap_cons_of_neg {a : A} (P : ¬ p a) : ∀ l, dmap p f (a::l) = dmap p f l := λ l, dif_neg P lemma mem_dmap : ∀ {l : list A} {a} (Pa : p a), a ∈ l → (f a Pa) ∈ dmap p f l | [] := take a Pa Pinnil, by contradiction | (a::l) := take b Pb Pbin, or.elim (eq_or_mem_of_mem_cons Pbin) (assume Pbeqa, begin rewrite [eq.symm Pbeqa, dmap_cons_of_pos Pb], exact !mem_cons end) (assume Pbinl, decidable.rec_on (h a) (assume Pa, begin rewrite [dmap_cons_of_pos Pa], apply mem_cons_of_mem, exact mem_dmap Pb Pbinl end) (assume nPa, begin rewrite [dmap_cons_of_neg nPa], exact mem_dmap Pb Pbinl end)) lemma exists_of_mem_dmap : ∀ {l : list A} {b : B}, b ∈ dmap p f l → ∃ a P, a ∈ l ∧ b = f a P | [] := take b, by rewrite dmap_nil; contradiction | (a::l) := take b, decidable.rec_on (h a) (assume Pa, begin rewrite [dmap_cons_of_pos Pa, mem_cons_iff], intro Pb, cases Pb with Peq Pin, exact exists.intro a (exists.intro Pa (and.intro !mem_cons Peq)), have Pex : ∃ (a : A) (P : p a), a ∈ l ∧ b = f a P, from exists_of_mem_dmap Pin, cases Pex with a' Pex', cases Pex' with Pa' P', exact exists.intro a' (exists.intro Pa' (and.intro (mem_cons_of_mem a (and.left P')) (and.right P'))) end) (assume nPa, begin rewrite [dmap_cons_of_neg nPa], intro Pin, have Pex : ∃ (a : A) (P : p a), a ∈ l ∧ b = f a P, from exists_of_mem_dmap Pin, cases Pex with a' Pex', cases Pex' with Pa' P', exact exists.intro a' (exists.intro Pa' (and.intro (mem_cons_of_mem a (and.left P')) (and.right P'))) end) lemma map_dmap_of_inv_of_pos {g : B → A} (Pinv : ∀ a (Pa : p a), g (f a Pa) = a) : ∀ {l : list A}, (∀ ⦃a⦄, a ∈ l → p a) → map g (dmap p f l) = l | [] := assume Pl, by rewrite [dmap_nil, map_nil] | (a::l) := assume Pal, have Pa : p a, from Pal a !mem_cons, have Pl : ∀ a, a ∈ l → p a, from take x Pxin, Pal x (mem_cons_of_mem a Pxin), by rewrite [dmap_cons_of_pos Pa, map_cons, Pinv, map_dmap_of_inv_of_pos Pl] lemma mem_of_dinj_of_mem_dmap (Pdi : dinj p f) : ∀ {l : list A} {a} (Pa : p a), (f a Pa) ∈ dmap p f l → a ∈ l | [] := take a Pa Pinnil, by contradiction | (b::l) := take a Pa Pmap, decidable.rec_on (h b) (λ Pb, begin rewrite (dmap_cons_of_pos Pb) at Pmap, rewrite mem_cons_iff at Pmap, rewrite mem_cons_iff, apply (or_of_or_of_imp_of_imp Pmap), apply Pdi, apply mem_of_dinj_of_mem_dmap Pa end) (λ nPb, begin rewrite (dmap_cons_of_neg nPb) at Pmap, apply mem_cons_of_mem, exact mem_of_dinj_of_mem_dmap Pa Pmap end) lemma not_mem_dmap_of_dinj_of_not_mem (Pdi : dinj p f) {l : list A} {a} (Pa : p a) : a ∉ l → (f a Pa) ∉ dmap p f l := not.mto (mem_of_dinj_of_mem_dmap Pdi Pa) end dmap section open equiv definition list_equiv_of_equiv {A B : Type} : A ≃ B → list A ≃ list B | (mk f g l r) := mk (map f) (map g) begin intros, rewrite [map_map, id_of_left_inverse l, map_id], try reflexivity end begin intros, rewrite [map_map, id_of_right_inverse r, map_id], try reflexivity end private definition to_nat : list nat → nat | [] := 0 | (x::xs) := succ (mkpair (to_nat xs) x) open prod.ops private definition of_nat.F : Π (n : nat), (Π m, m < n → list nat) → list nat | 0 f := [] | (succ n) f := (unpair n).2 :: f (unpair n).1 (unpair_lt n) private definition of_nat : nat → list nat := well_founded.fix of_nat.F private lemma of_nat_zero : of_nat 0 = [] := well_founded.fix_eq of_nat.F 0 private lemma of_nat_succ (n : nat) : of_nat (succ n) = (unpair n).2 :: of_nat (unpair n).1 := well_founded.fix_eq of_nat.F (succ n) private lemma to_nat_of_nat (n : nat) : to_nat (of_nat n) = n := nat.case_strong_induction_on n _ (λ n ih, begin rewrite of_nat_succ, unfold to_nat, have to_nat (of_nat (unpair n).1) = (unpair n).1, from ih _ (le_of_lt_succ (unpair_lt n)), rewrite this, rewrite mkpair_unpair end) private lemma of_nat_to_nat : ∀ (l : list nat), of_nat (to_nat l) = l | [] := rfl | (x::xs) := begin unfold to_nat, rewrite of_nat_succ, rewrite *unpair_mkpair, esimp, congruence, apply of_nat_to_nat end definition list_nat_equiv_nat : list nat ≃ nat := mk to_nat of_nat of_nat_to_nat to_nat_of_nat definition list_equiv_self_of_equiv_nat {A : Type} : A ≃ nat → list A ≃ A := suppose A ≃ nat, calc list A ≃ list nat : list_equiv_of_equiv this ... ≃ nat : list_nat_equiv_nat ... ≃ A : this end end list attribute list.decidable_any [instance] attribute list.decidable_all [instance]