/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Jeremy Avigad, Leonardo de Moura Definitions and properties of gcd, lcm, and coprime. -/ import .div open eq.ops well_founded decidable prod namespace nat /- gcd -/ private definition pair_nat.lt : nat × nat → nat × nat → Prop := measure pr₂ private definition pair_nat.lt.wf : well_founded pair_nat.lt := intro_k (measure.wf pr₂) 20 -- we use intro_k to be able to execute gcd efficiently in the kernel local attribute pair_nat.lt.wf [instance] -- instance will not be saved in .olean local infixl ` ≺ `:50 := pair_nat.lt private definition gcd.lt.dec (x y₁ : nat) : (succ y₁, x % succ y₁) ≺ (x, succ y₁) := !mod_lt (succ_pos y₁) definition gcd.F : Π (p₁ : nat × nat), (Π p₂ : nat × nat, p₂ ≺ p₁ → nat) → nat | (x, 0) f := x | (x, succ y) f := f (succ y, x % succ y) !gcd.lt.dec definition gcd (x y : nat) := fix gcd.F (x, y) theorem gcd_zero_right [simp] (x : nat) : gcd x 0 = x := rfl theorem gcd_succ [simp] (x y : nat) : gcd x (succ y) = gcd (succ y) (x % succ y) := well_founded.fix_eq gcd.F (x, succ y) theorem gcd_one_right (n : ℕ) : gcd n 1 = 1 := calc gcd n 1 = gcd 1 (n % 1) : gcd_succ ... = gcd 1 0 : mod_one theorem gcd_def (x : ℕ) : Π (y : ℕ), gcd x y = if y = 0 then x else gcd y (x % y) | 0 := !gcd_zero_right | (succ y) := !gcd_succ ⬝ (if_neg !succ_ne_zero)⁻¹ theorem gcd_self : Π (n : ℕ), gcd n n = n | 0 := rfl | (succ n₁) := calc gcd (succ n₁) (succ n₁) = gcd (succ n₁) (succ n₁ % succ n₁) : gcd_succ ... = gcd (succ n₁) 0 : mod_self theorem gcd_zero_left : Π (n : ℕ), gcd 0 n = n | 0 := rfl | (succ n₁) := calc gcd 0 (succ n₁) = gcd (succ n₁) (0 % succ n₁) : gcd_succ ... = gcd (succ n₁) 0 : zero_mod theorem gcd_of_pos (m : ℕ) {n : ℕ} (H : n > 0) : gcd m n = gcd n (m % n) := gcd_def m n ⬝ if_neg (ne_zero_of_pos H) theorem gcd_rec (m n : ℕ) : gcd m n = gcd n (m % n) := by_cases_zero_pos n (calc m = gcd 0 m : gcd_zero_left ... = gcd 0 (m % 0) : mod_zero) (take n, assume H : 0 < n, gcd_of_pos m H) theorem gcd.induction {P : ℕ → ℕ → Prop} (m n : ℕ) (H0 : ∀m, P m 0) (H1 : ∀m n, 0 < n → P n (m % n) → P m n) : P m n := induction (m, n) (prod.rec (λm, nat.rec (λ IH, H0 m) (λ n₁ v (IH : ∀p₂, p₂ ≺ (m, succ n₁) → P (pr₁ p₂) (pr₂ p₂)), H1 m (succ n₁) !succ_pos (IH _ !gcd.lt.dec)))) theorem gcd_dvd (m n : ℕ) : (gcd m n ∣ m) ∧ (gcd m n ∣ n) := gcd.induction m n (take m, and.intro (!one_mul ▸ !dvd_mul_left) !dvd_zero) (take m n (npos : 0 < n), and.rec (assume (IH₁ : gcd n (m % n) ∣ n) (IH₂ : gcd n (m % n) ∣ (m % n)), have H : (gcd n (m % n) ∣ (m / n * n + m % n)), from dvd_add (dvd.trans IH₁ !dvd_mul_left) IH₂, have H1 : (gcd n (m % n) ∣ m), from !eq_div_mul_add_mod⁻¹ ▸ H, show (gcd m n ∣ m) ∧ (gcd m n ∣ n), from !gcd_rec⁻¹ ▸ (and.intro H1 IH₁))) theorem gcd_dvd_left (m n : ℕ) : gcd m n ∣ m := and.left !gcd_dvd theorem gcd_dvd_right (m n : ℕ) : gcd m n ∣ n := and.right !gcd_dvd theorem dvd_gcd {m n k : ℕ} : k ∣ m → k ∣ n → k ∣ gcd m n := gcd.induction m n (take m, imp.intro) (take m n (npos : n > 0) (IH : k ∣ n → k ∣ m % n → k ∣ gcd n (m % n)) (H1 : k ∣ m) (H2 : k ∣ n), have H3 : k ∣ m / n * n + m % n, from !eq_div_mul_add_mod ▸ H1, have H4 : k ∣ m % n, from nat.dvd_of_dvd_add_left H3 (dvd.trans H2 !dvd_mul_left), !gcd_rec⁻¹ ▸ IH H2 H4) theorem gcd.comm (m n : ℕ) : gcd m n = gcd n m := dvd.antisymm (dvd_gcd !gcd_dvd_right !gcd_dvd_left) (dvd_gcd !gcd_dvd_right !gcd_dvd_left) theorem gcd.assoc (m n k : ℕ) : gcd (gcd m n) k = gcd m (gcd n k) := dvd.antisymm (dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_left) (dvd_gcd (dvd.trans !gcd_dvd_left !gcd_dvd_right) !gcd_dvd_right)) (dvd_gcd (dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !gcd_dvd_left)) (dvd.trans !gcd_dvd_right !gcd_dvd_right)) theorem gcd_one_left (m : ℕ) : gcd 1 m = 1 := !gcd.comm ⬝ !gcd_one_right theorem gcd_mul_left (m n k : ℕ) : gcd (m * n) (m * k) = m * gcd n k := gcd.induction n k (take n, calc gcd (m * n) (m * 0) = gcd (m * n) 0 : mul_zero) (take n k, assume H : 0 < k, assume IH : gcd (m * k) (m * (n % k)) = m * gcd k (n % k), calc gcd (m * n) (m * k) = gcd (m * k) (m * n % (m * k)) : !gcd_rec ... = gcd (m * k) (m * (n % k)) : mul_mod_mul_left ... = m * gcd k (n % k) : IH ... = m * gcd n k : !gcd_rec) theorem gcd_mul_right (m n k : ℕ) : gcd (m * n) (k * n) = gcd m k * n := calc gcd (m * n) (k * n) = gcd (n * m) (k * n) : mul.comm ... = gcd (n * m) (n * k) : mul.comm ... = n * gcd m k : gcd_mul_left ... = gcd m k * n : mul.comm theorem gcd_pos_of_pos_left {m : ℕ} (n : ℕ) (mpos : m > 0) : gcd m n > 0 := pos_of_dvd_of_pos !gcd_dvd_left mpos theorem gcd_pos_of_pos_right (m : ℕ) {n : ℕ} (npos : n > 0) : gcd m n > 0 := pos_of_dvd_of_pos !gcd_dvd_right npos theorem eq_zero_of_gcd_eq_zero_left {m n : ℕ} (H : gcd m n = 0) : m = 0 := or.elim (eq_zero_or_pos m) (assume H1, H1) (assume H1 : m > 0, absurd H⁻¹ (ne_of_lt (!gcd_pos_of_pos_left H1))) theorem eq_zero_of_gcd_eq_zero_right {m n : ℕ} (H : gcd m n = 0) : n = 0 := eq_zero_of_gcd_eq_zero_left (!gcd.comm ▸ H) theorem gcd_div {m n k : ℕ} (H1 : k ∣ m) (H2 : k ∣ n) : gcd (m / k) (n / k) = gcd m n / k := or.elim (eq_zero_or_pos k) (assume H3 : k = 0, by subst k; rewrite *nat.div_zero) (assume H3 : k > 0, (nat.div_eq_of_eq_mul_left H3 (calc gcd m n = gcd m (n / k * k) : nat.div_mul_cancel H2 ... = gcd (m / k * k) (n / k * k) : nat.div_mul_cancel H1 ... = gcd (m / k) (n / k) * k : gcd_mul_right))⁻¹) theorem gcd_dvd_gcd_mul_left (m n k : ℕ) : gcd m n ∣ gcd (k * m) n := dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right theorem gcd_dvd_gcd_mul_right (m n k : ℕ) : gcd m n ∣ gcd (m * k) n := !mul.comm ▸ !gcd_dvd_gcd_mul_left theorem gcd_dvd_gcd_mul_left_right (m n k : ℕ) : gcd m n ∣ gcd m (k * n) := dvd_gcd !gcd_dvd_left (dvd.trans !gcd_dvd_right !dvd_mul_left) theorem gcd_dvd_gcd_mul_right_right (m n k : ℕ) : gcd m n ∣ gcd m (n * k) := !mul.comm ▸ !gcd_dvd_gcd_mul_left_right /- lcm -/ definition lcm (m n : ℕ) : ℕ := m * n / (gcd m n) theorem lcm.comm (m n : ℕ) : lcm m n = lcm n m := calc lcm m n = m * n / gcd m n : rfl ... = n * m / gcd m n : mul.comm ... = n * m / gcd n m : gcd.comm ... = lcm n m : rfl theorem lcm_zero_left (m : ℕ) : lcm 0 m = 0 := calc lcm 0 m = 0 * m / gcd 0 m : rfl ... = 0 / gcd 0 m : zero_mul ... = 0 : nat.zero_div theorem lcm_zero_right (m : ℕ) : lcm m 0 = 0 := !lcm.comm ▸ !lcm_zero_left theorem lcm_one_left (m : ℕ) : lcm 1 m = m := calc lcm 1 m = 1 * m / gcd 1 m : rfl ... = m / gcd 1 m : one_mul ... = m / 1 : gcd_one_left ... = m : nat.div_one theorem lcm_one_right (m : ℕ) : lcm m 1 = m := !lcm.comm ▸ !lcm_one_left theorem lcm_self (m : ℕ) : lcm m m = m := have H : m * m / m = m, from by_cases_zero_pos m !nat.div_zero (take m, assume H1 : m > 0, !nat.mul_div_cancel H1), calc lcm m m = m * m / gcd m m : rfl ... = m * m / m : gcd_self ... = m : H theorem dvd_lcm_left (m n : ℕ) : m ∣ lcm m n := have H : lcm m n = m * (n / gcd m n), from nat.mul_div_assoc _ !gcd_dvd_right, dvd.intro H⁻¹ theorem dvd_lcm_right (m n : ℕ) : n ∣ lcm m n := !lcm.comm ▸ !dvd_lcm_left theorem gcd_mul_lcm (m n : ℕ) : gcd m n * lcm m n = m * n := eq.symm (nat.eq_mul_of_div_eq_right (dvd.trans !gcd_dvd_left !dvd_mul_right) rfl) theorem lcm_dvd {m n k : ℕ} (H1 : m ∣ k) (H2 : n ∣ k) : lcm m n ∣ k := or.elim (eq_zero_or_pos k) (assume kzero : k = 0, !kzero⁻¹ ▸ !dvd_zero) (assume kpos : k > 0, have mpos : m > 0, from pos_of_dvd_of_pos H1 kpos, have npos : n > 0, from pos_of_dvd_of_pos H2 kpos, have gcd_pos : gcd m n > 0, from !gcd_pos_of_pos_left mpos, obtain p (km : k = m * p), from exists_eq_mul_right_of_dvd H1, obtain q (kn : k = n * q), from exists_eq_mul_right_of_dvd H2, have ppos : p > 0, from pos_of_mul_pos_left (km ▸ kpos), have qpos : q > 0, from pos_of_mul_pos_left (kn ▸ kpos), have H3 : p * q * (m * n * gcd p q) = p * q * (gcd m n * k), from calc p * q * (m * n * gcd p q) = m * p * (n * q * gcd p q) : by rewrite [*mul.assoc, *mul.left_comm q, mul.left_comm p] ... = k * (k * gcd p q) : by rewrite [-kn, -km] ... = k * gcd (k * p) (k * q) : by rewrite gcd_mul_left ... = k * gcd (n * q * p) (m * p * q) : by rewrite [-kn, -km] ... = k * (gcd n m * (p * q)) : by rewrite [*mul.assoc, mul.comm q, gcd_mul_right] ... = p * q * (gcd m n * k) : by rewrite [mul.comm, mul.comm (gcd n m), gcd.comm, *mul.assoc], have H4 : m * n * gcd p q = gcd m n * k, from !eq_of_mul_eq_mul_left (mul_pos ppos qpos) H3, have H5 : gcd m n * (lcm m n * gcd p q) = gcd m n * k, from !mul.assoc ▸ !gcd_mul_lcm⁻¹ ▸ H4, have H6 : lcm m n * gcd p q = k, from !eq_of_mul_eq_mul_left gcd_pos H5, dvd.intro H6) theorem lcm.assoc (m n k : ℕ) : lcm (lcm m n) k = lcm m (lcm n k) := dvd.antisymm (lcm_dvd (lcm_dvd !dvd_lcm_left (dvd.trans !dvd_lcm_left !dvd_lcm_right)) (dvd.trans !dvd_lcm_right !dvd_lcm_right)) (lcm_dvd (dvd.trans !dvd_lcm_left !dvd_lcm_left) (lcm_dvd (dvd.trans !dvd_lcm_right !dvd_lcm_left) !dvd_lcm_right)) /- coprime -/ definition coprime [reducible] (m n : ℕ) : Prop := gcd m n = 1 lemma gcd_eq_one_of_coprime {m n : ℕ} : coprime m n → gcd m n = 1 := λ h, h theorem coprime_swap {m n : ℕ} (H : coprime n m) : coprime m n := !gcd.comm ▸ H theorem dvd_of_coprime_of_dvd_mul_right {m n k : ℕ} (H1 : coprime k n) (H2 : k ∣ m * n) : k ∣ m := have H3 : gcd (m * k) (m * n) = m, from calc gcd (m * k) (m * n) = m * gcd k n : gcd_mul_left ... = m * 1 : H1 ... = m : mul_one, have H4 : (k ∣ gcd (m * k) (m * n)), from dvd_gcd !dvd_mul_left H2, H3 ▸ H4 theorem dvd_of_coprime_of_dvd_mul_left {m n k : ℕ} (H1 : coprime k m) (H2 : k ∣ m * n) : k ∣ n := dvd_of_coprime_of_dvd_mul_right H1 (!mul.comm ▸ H2) theorem gcd_mul_left_cancel_of_coprime {k : ℕ} (m : ℕ) {n : ℕ} (H : coprime k n) : gcd (k * m) n = gcd m n := have H1 : coprime (gcd (k * m) n) k, from calc gcd (gcd (k * m) n) k = gcd (k * gcd 1 m) n : by rewrite [-gcd_mul_left, mul_one, gcd.comm, gcd.assoc] ... = 1 : by rewrite [gcd_one_left, mul_one, ↑coprime at H, H], dvd.antisymm (dvd_gcd (dvd_of_coprime_of_dvd_mul_left H1 !gcd_dvd_left) !gcd_dvd_right) (dvd_gcd (dvd.trans !gcd_dvd_left !dvd_mul_left) !gcd_dvd_right) theorem gcd_mul_right_cancel_of_coprime (m : ℕ) {k n : ℕ} (H : coprime k n) : gcd (m * k) n = gcd m n := !mul.comm ▸ !gcd_mul_left_cancel_of_coprime H theorem gcd_mul_left_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) : gcd m (k * n) = gcd m n := !gcd.comm ▸ !gcd.comm ▸ !gcd_mul_left_cancel_of_coprime H theorem gcd_mul_right_cancel_of_coprime_right {k m : ℕ} (n : ℕ) (H : coprime k m) : gcd m (n * k) = gcd m n := !gcd.comm ▸ !gcd.comm ▸ !gcd_mul_right_cancel_of_coprime H theorem coprime_div_gcd_div_gcd {m n : ℕ} (H : gcd m n > 0) : coprime (m / gcd m n) (n / gcd m n) := calc gcd (m / gcd m n) (n / gcd m n) = gcd m n / gcd m n : gcd_div !gcd_dvd_left !gcd_dvd_right ... = 1 : nat.div_self H theorem not_coprime_of_dvd_of_dvd {m n d : ℕ} (dgt1 : d > 1) (Hm : d ∣ m) (Hn : d ∣ n) : ¬ coprime m n := assume co : coprime m n, have d ∣ gcd m n, from dvd_gcd Hm Hn, have d ∣ 1, by rewrite [↑coprime at co, co at this]; apply this, have d ≤ 1, from le_of_dvd dec_trivial this, show false, from not_lt_of_ge `d ≤ 1` `d > 1` theorem exists_coprime {m n : ℕ} (H : gcd m n > 0) : exists m' n', coprime m' n' ∧ m = m' * gcd m n ∧ n = n' * gcd m n := have H1 : m = (m / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_left)⁻¹, have H2 : n = (n / gcd m n) * gcd m n, from (nat.div_mul_cancel !gcd_dvd_right)⁻¹, exists.intro _ (exists.intro _ (and.intro (coprime_div_gcd_div_gcd H) (and.intro H1 H2))) theorem coprime_mul {m n k : ℕ} (H1 : coprime m k) (H2 : coprime n k) : coprime (m * n) k := calc gcd (m * n) k = gcd n k : !gcd_mul_left_cancel_of_coprime H1 ... = 1 : H2 theorem coprime_mul_right {k m n : ℕ} (H1 : coprime k m) (H2 : coprime k n) : coprime k (m * n) := coprime_swap (coprime_mul (coprime_swap H1) (coprime_swap H2)) theorem coprime_of_coprime_mul_left {k m n : ℕ} (H : coprime (k * m) n) : coprime m n := have H1 : (gcd m n ∣ gcd (k * m) n), from !gcd_dvd_gcd_mul_left, eq_one_of_dvd_one (H ▸ H1) theorem coprime_of_coprime_mul_right {k m n : ℕ} (H : coprime (m * k) n) : coprime m n := coprime_of_coprime_mul_left (!mul.comm ▸ H) theorem coprime_of_coprime_mul_left_right {k m n : ℕ} (H : coprime m (k * n)) : coprime m n := coprime_swap (coprime_of_coprime_mul_left (coprime_swap H)) theorem coprime_of_coprime_mul_right_right {k m n : ℕ} (H : coprime m (n * k)) : coprime m n := coprime_of_coprime_mul_left_right (!mul.comm ▸ H) theorem comprime_one_left : ∀ n, coprime 1 n := λ n, !gcd_one_left theorem comprime_one_right : ∀ n, coprime n 1 := λ n, !gcd_one_right theorem exists_eq_prod_and_dvd_and_dvd {m n k : nat} (H : k ∣ m * n) : ∃ m' n', k = m' * n' ∧ m' ∣ m ∧ n' ∣ n := or.elim (eq_zero_or_pos (gcd k m)) (assume H1 : gcd k m = 0, have H2 : k = 0, from eq_zero_of_gcd_eq_zero_left H1, have H3 : m = 0, from eq_zero_of_gcd_eq_zero_right H1, have H4 : k = 0 * n, from H2 ⬝ !zero_mul⁻¹, have H5 : 0 ∣ m, from H3⁻¹ ▸ !dvd.refl, have H6 : n ∣ n, from !dvd.refl, exists.intro _ (exists.intro _ (and.intro H4 (and.intro H5 H6)))) (assume H1 : gcd k m > 0, have H2 : gcd k m ∣ k, from !gcd_dvd_left, have H3 : k / gcd k m ∣ (m * n) / gcd k m, from nat.div_dvd_div H2 H, have H4 : (m * n) / gcd k m = (m / gcd k m) * n, from calc m * n / gcd k m = n * m / gcd k m : mul.comm ... = n * (m / gcd k m) : !nat.mul_div_assoc !gcd_dvd_right ... = m / gcd k m * n : mul.comm, have H5 : k / gcd k m ∣ (m / gcd k m) * n, from H4 ▸ H3, have H6 : coprime (k / gcd k m) (m / gcd k m), from coprime_div_gcd_div_gcd H1, have H7 : k / gcd k m ∣ n, from dvd_of_coprime_of_dvd_mul_left H6 H5, have H8 : k = gcd k m * (k / gcd k m), from (nat.mul_div_cancel' H2)⁻¹, exists.intro _ (exists.intro _ (and.intro H8 (and.intro !gcd_dvd_right H7)))) end nat