Set: pp::colors
  Set: pp::unicode
  Assumed: p
  Assumed: q
  Assumed: r
  Proved: T1
  Proved: T2
theorem T2 (H : p) (H::1 : q) : p ∧ q ∧ p := and_intro H (and_intro H::1 H)
  Proved: T3
theorem T3 (H : p) (H::1 : p ∧ q) (H::2 : r) : q ∧ r ∧ p := and_intro (and_elimr H::1) (and_intro H::2 H)
  Proved: T4
theorem T4 (H : p) (H::1 : p ∧ q) (H::2 : r) : q ∧ r ∧ p := and_intro (and_elimr H::1) (and_intro H::2 H)