/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn n-truncation of types. Ported from Coq HoTT -/ /- The hit n-truncation is primitive, declared in init.hit. -/ import types.sigma types.pointed open is_trunc eq equiv is_equiv function prod sum sigma namespace trunc protected definition elim [recursor 6] {n : trunc_index} {A : Type} {P : Type} [Pt : is_trunc n P] (H : A → P) : trunc n A → P := trunc.rec H protected definition elim_on {n : trunc_index} {A : Type} {P : Type} (aa : trunc n A) [Pt : is_trunc n P] (H : A → P) : P := trunc.elim H aa /- there are no theorems to eliminate to the universe here, because the universe is not a set -/ end trunc attribute trunc.elim_on [unfold 4] attribute trunc.rec [recursor] attribute trunc.elim [recursor 6] [unfold 6] namespace trunc variables {X Y Z : Type} {P : X → Type} (A B : Type) (n : trunc_index) local attribute is_trunc_eq [instance] variables {A n} definition untrunc_of_is_trunc [reducible] [H : is_trunc n A] : trunc n A → A := trunc.rec id variables (A n) definition is_equiv_tr [instance] [constructor] [H : is_trunc n A] : is_equiv (@tr n A) := adjointify _ (untrunc_of_is_trunc) (λaa, trunc.rec_on aa (λa, idp)) (λa, idp) definition trunc_equiv [constructor] [H : is_trunc n A] : trunc n A ≃ A := (equiv.mk tr _)⁻¹ᵉ definition is_trunc_of_is_equiv_tr [H : is_equiv (@tr n A)] : is_trunc n A := is_trunc_is_equiv_closed n (@tr n _)⁻¹ /- Functoriality -/ definition trunc_functor [unfold 5] (f : X → Y) : trunc n X → trunc n Y := λxx, trunc.rec_on xx (λx, tr (f x)) definition trunc_functor_compose (f : X → Y) (g : Y → Z) : trunc_functor n (g ∘ f) ~ trunc_functor n g ∘ trunc_functor n f := λxx, trunc.rec_on xx (λx, idp) definition trunc_functor_id : trunc_functor n (@id A) ~ id := λxx, trunc.rec_on xx (λx, idp) definition is_equiv_trunc_functor [constructor] (f : X → Y) [H : is_equiv f] : is_equiv (trunc_functor n f) := adjointify _ (trunc_functor n f⁻¹) (λyy, trunc.rec_on yy (λy, ap tr !right_inv)) (λxx, trunc.rec_on xx (λx, ap tr !left_inv)) definition trunc_homotopy {f g : X → Y} (p : f ~ g) : trunc_functor n f ~ trunc_functor n g := λxx, trunc.rec_on xx (λx, ap tr (p x)) section open equiv.ops definition trunc_equiv_trunc [constructor] (f : X ≃ Y) : trunc n X ≃ trunc n Y := equiv.mk _ (is_equiv_trunc_functor n f) end section open prod.ops definition trunc_prod_equiv [constructor] : trunc n (X × Y) ≃ trunc n X × trunc n Y := begin fapply equiv.MK, {exact (λpp, trunc.rec_on pp (λp, (tr p.1, tr p.2)))}, {intro p, cases p with xx yy, apply (trunc.rec_on xx), intro x, apply (trunc.rec_on yy), intro y, exact (tr (x,y))}, {intro p, cases p with xx yy, apply (trunc.rec_on xx), intro x, apply (trunc.rec_on yy), intro y, apply idp}, {intro pp, apply (trunc.rec_on pp), intro p, cases p, apply idp} end end /- Propositional truncation -/ -- should this live in hprop? definition merely [reducible] [constructor] (A : Type) : hprop := trunctype.mk (trunc -1 A) _ notation `||`:max A `||`:0 := merely A notation `∥`:max A `∥`:0 := merely A definition Exists [reducible] [constructor] (P : X → Type) : hprop := ∥ sigma P ∥ definition or [reducible] [constructor] (A B : Type) : hprop := ∥ A ⊎ B ∥ notation `exists` binders `,` r:(scoped P, Exists P) := r notation `∃` binders `,` r:(scoped P, Exists P) := r notation A ` \/ ` B := or A B notation A ∨ B := or A B definition merely.intro [reducible] [constructor] (a : A) : ∥ A ∥ := tr a definition exists.intro [reducible] [constructor] (x : X) (p : P x) : ∃x, P x := tr ⟨x, p⟩ definition or.intro_left [reducible] [constructor] (x : X) : X ∨ Y := tr (inl x) definition or.intro_right [reducible] [constructor] (y : Y) : X ∨ Y := tr (inr y) definition is_contr_of_merely_hprop [H : is_hprop A] (aa : merely A) : is_contr A := is_contr_of_inhabited_hprop (trunc.rec_on aa id) section open sigma.ops definition trunc_sigma_equiv [constructor] : trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) := equiv.MK (λpp, trunc.rec_on pp (λp, tr ⟨p.1, tr p.2⟩)) (λpp, trunc.rec_on pp (λp, trunc.rec_on p.2 (λb, tr ⟨p.1, b⟩))) (λpp, trunc.rec_on pp (λp, sigma.rec_on p (λa bb, trunc.rec_on bb (λb, by esimp)))) (λpp, trunc.rec_on pp (λp, sigma.rec_on p (λa b, by esimp))) definition trunc_sigma_equiv_of_is_trunc [H : is_trunc n X] : trunc n (Σ x, P x) ≃ Σ x, trunc n (P x) := calc trunc n (Σ x, P x) ≃ trunc n (Σ x, trunc n (P x)) : trunc_sigma_equiv ... ≃ Σ x, trunc n (P x) : !trunc_equiv end /- the (non-dependent) universal property -/ definition trunc_arrow_equiv [constructor] [H : is_trunc n B] : (trunc n A → B) ≃ (A → B) := begin fapply equiv.MK, { intro g a, exact g (tr a)}, { intro f x, exact trunc.rec_on x f}, { intro f, apply eq_of_homotopy, intro a, reflexivity}, { intro g, apply eq_of_homotopy, intro x, exact trunc.rec_on x (λa, idp)}, end end trunc