/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.precategory.functor Authors: Floris van Doorn, Jakob von Raumer -/ import .basic types.pi .iso open function category eq prod equiv is_equiv sigma sigma.ops is_trunc funext iso open pi structure functor (C D : Precategory) : Type := (to_fun_ob : C → D) (to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b)) (respect_id : Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) (respect_comp : Π {a b c : C} (g : hom b c) (f : hom a b), to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f) namespace functor infixl `⇒`:25 := functor variables {A B C D E : Precategory} attribute to_fun_ob [coercion] attribute to_fun_hom [coercion] -- The following lemmas will later be used to prove that the type of -- precategories forms a precategory itself protected definition compose [reducible] (G : functor D E) (F : functor C D) : functor C E := functor.mk (λ x, G (F x)) (λ a b f, G (F f)) (λ a, calc G (F (ID a)) = G (ID (F a)) : by rewrite respect_id ... = ID (G (F a)) : by rewrite respect_id) (λ a b c g f, calc G (F (g ∘ f)) = G (F g ∘ F f) : by rewrite respect_comp ... = G (F g) ∘ G (F f) : by rewrite respect_comp) infixr `∘f`:60 := compose protected definition id [reducible] {C : Precategory} : functor C C := mk (λa, a) (λ a b f, f) (λ a, idp) (λ a b c f g, idp) protected definition ID [reducible] (C : Precategory) : functor C C := id definition functor_mk_eq' {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ = F₂) (pH : pF ▹ H₁ = H₂) : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ := apD01111 functor.mk pF pH !is_hprop.elim !is_hprop.elim definition functor_eq' {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ = to_fun_ob F₂), (transport (λx, Πa b f, hom (x a) (x b)) p (to_fun_hom F₁) = to_fun_hom F₂) → F₁ = F₂ := functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_mk_eq')) definition functor_mk_eq {F₁ F₂ : C → D} {H₁ : Π(a b : C), hom a b → hom (F₁ a) (F₁ b)} {H₂ : Π(a b : C), hom a b → hom (F₂ a) (F₂ b)} (id₁ id₂ comp₁ comp₂) (pF : F₁ ∼ F₂) (pH : Π(a b : C) (f : hom a b), hom_of_eq (pF b) ∘ H₁ a b f ∘ inv_of_eq (pF a) = H₂ a b f) : functor.mk F₁ H₁ id₁ comp₁ = functor.mk F₂ H₂ id₂ comp₂ := functor_mk_eq' id₁ id₂ comp₁ comp₂ (eq_of_homotopy pF) (eq_of_homotopy (λc, eq_of_homotopy (λc', eq_of_homotopy (λf, begin apply concat, rotate_left 1, exact (pH c c' f), apply concat, rotate_left 1, apply transport_hom, apply concat, rotate_left 1, exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c c') f), apply (apD10' f), apply concat, rotate_left 1, exact (pi_transport_constant (eq_of_homotopy pF) (H₁ c) c'), apply (apD10' c'), apply concat, rotate_left 1, exact (pi_transport_constant (eq_of_homotopy pF) H₁ c), apply idp end)))) definition functor_eq {F₁ F₂ : C ⇒ D} : Π(p : to_fun_ob F₁ ∼ to_fun_ob F₂), (Π(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a) = F₂ f) → F₁ = F₂ := functor.rec_on F₁ (λO₁ H₁ id₁ comp₁, functor.rec_on F₂ (λO₂ H₂ id₂ comp₂ p, !functor_mk_eq)) definition functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)} {H₂ : Π(a b : C), hom a b → hom (F a) (F b)} (id₁ id₂ comp₁ comp₂) (pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f) : functor.mk F H₁ id₁ comp₁ = functor.mk F H₂ id₂ comp₂ := functor_eq (λc, idp) (λa b f, !id_leftright ⬝ !pH) protected definition preserve_iso (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] : is_iso (F f) := begin fapply @is_iso.mk, apply (F (f⁻¹)), repeat (apply concat ; apply inverse ; apply (respect_comp F) ; apply concat ; apply (ap (λ x, to_fun_hom F x)) ; [apply left_inverse | apply right_inverse] ; apply (respect_id F) ), end attribute preserve_iso [instance] protected definition respect_inv (F : C ⇒ D) {a b : C} (f : hom a b) [H : is_iso f] [H' : is_iso (F f)] : F (f⁻¹) = (F f)⁻¹ := begin fapply @left_inverse_eq_right_inverse, apply (F f), apply concat, apply inverse, apply (respect_comp F), apply concat, apply (ap (λ x, to_fun_hom F x)), apply left_inverse, apply respect_id, apply right_inverse, end protected definition assoc (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : H ∘f (G ∘f F) = (H ∘f G) ∘f F := !functor_mk_eq_constant (λa b f, idp) protected definition id_left (F : C ⇒ D) : id ∘f F = F := functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp)) protected definition id_right (F : C ⇒ D) : F ∘f id = F := functor.rec_on F (λF1 F2 F3 F4, !functor_mk_eq_constant (λa b f, idp)) protected definition comp_id_eq_id_comp (F : C ⇒ D) : F ∘f functor.id = functor.id ∘f F := !functor.id_right ⬝ !functor.id_left⁻¹ -- "functor C D" is equivalent to a certain sigma type protected definition sigma_char : (Σ (to_fun_ob : C → D) (to_fun_hom : Π ⦃a b : C⦄, hom a b → hom (to_fun_ob a) (to_fun_ob b)), (Π (a : C), to_fun_hom (ID a) = ID (to_fun_ob a)) × (Π {a b c : C} (g : hom b c) (f : hom a b), to_fun_hom (g ∘ f) = to_fun_hom g ∘ to_fun_hom f)) ≃ (functor C D) := begin fapply equiv.MK, {intro S, fapply functor.mk, exact (S.1), exact (S.2.1), exact (pr₁ S.2.2), exact (pr₂ S.2.2)}, {intro F, cases F with (d1, d2, d3, d4), exact ⟨d1, d2, (d3, @d4)⟩}, {intro F, cases F, apply idp}, {intro S, cases S with (d1, S2), cases S2 with (d2, P1), cases P1, apply idp}, end set_option apply.class_instance false protected definition is_hset_functor [HD : is_hset D] : is_hset (functor C D) := begin apply is_trunc_is_equiv_closed, apply equiv.to_is_equiv, apply sigma_char, apply is_trunc_sigma, apply is_trunc_pi, intros, exact HD, intro F, apply is_trunc_sigma, apply is_trunc_pi, intro a, {apply is_trunc_pi, intro b, apply is_trunc_pi, intro c, apply !homH}, intro H, apply is_trunc_prod, {apply is_trunc_pi, intro a, apply is_trunc_eq, apply is_trunc_succ, apply !homH}, {repeat (apply is_trunc_pi; intros), apply is_trunc_eq, apply is_trunc_succ, apply !homH}, end definition functor_mk_eq'_idp (F : C → D) (H : Π(a b : C), hom a b → hom (F a) (F b)) (id comp) : functor_mk_eq' id id comp comp (idpath F) (idpath H) = idp := begin fapply (apD011 (apD01111 functor.mk idp idp)), apply is_hset.elim, apply is_hset.elim end definition functor_eq'_idp (F : C ⇒ D) : functor_eq' idp idp = (idpath F) := by (cases F; apply functor_mk_eq'_idp) definition functor_eq_eta' {F₁ F₂ : C ⇒ D} (p : F₁ = F₂) : functor_eq' (ap to_fun_ob p) (!transport_compose⁻¹ ⬝ apD to_fun_hom p) = p := begin cases p, cases F₁, apply concat, rotate_left 1, apply functor_eq'_idp, apply (ap (functor_eq' idp)), apply idp_con, end definition functor_eq2' {F₁ F₂ : C ⇒ D} {p₁ p₂ : to_fun_ob F₁ = to_fun_ob F₂} (q₁ q₂) (r : p₁ = p₂) : functor_eq' p₁ q₁ = functor_eq' p₂ q₂ := by cases r; apply (ap (functor_eq' p₂)); apply is_hprop.elim definition functor_eq2 {F₁ F₂ : C ⇒ D} (p q : F₁ = F₂) (r : ap010 to_fun_ob p ∼ ap010 to_fun_ob q) : p = q := begin cases F₁ with (ob₁, hom₁, id₁, comp₁), cases F₂ with (ob₂, hom₂, id₂, comp₂), rewrite [-functor_eq_eta' p, -functor_eq_eta' q], apply functor_eq2', apply ap_eq_ap_of_homotopy, exact r, end -- definition ap010_functor_eq_mk' {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ = to_fun_ob F₂) -- (q : p ▹ F₁ = F₂) (c : C) : -- ap to_fun_ob (functor_eq_mk (apD10 p) (λa b f, _)) = p := sorry -- begin -- cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q), -- cases p, clears (e_1, e_2), -- end -- TODO: remove sorry definition ap010_functor_eq {F₁ F₂ : C ⇒ D} (p : to_fun_ob F₁ ∼ to_fun_ob F₂) (q : (λ(a b : C) (f : hom a b), hom_of_eq (p b) ∘ F₁ f ∘ inv_of_eq (p a)) ∼3 to_fun_hom F₂) (c : C) : ap010 to_fun_ob (functor_eq p q) c = p c := begin cases F₂, revert q, apply (homotopy.rec_on p), clear p, esimp, intros (p, q), apply sorry, --apply (homotopy3.rec_on q), clear q, intro q, --cases p, --TODO: report: this fails end definition ap010_functor_mk_eq_constant {F : C → D} {H₁ : Π(a b : C), hom a b → hom (F a) (F b)} {H₂ : Π(a b : C), hom a b → hom (F a) (F b)} {id₁ id₂ comp₁ comp₂} (pH : Π(a b : C) (f : hom a b), H₁ a b f = H₂ a b f) (c : C) : ap010 to_fun_ob (functor_mk_eq_constant id₁ id₂ comp₁ comp₂ pH) c = idp := !ap010_functor_eq --do we need this theorem? definition compose_pentagon (K : D ⇒ E) (H : C ⇒ D) (G : B ⇒ C) (F : A ⇒ B) : (calc K ∘f H ∘f G ∘f F = (K ∘f H) ∘f G ∘f F : functor.assoc ... = ((K ∘f H) ∘f G) ∘f F : functor.assoc) = (calc K ∘f H ∘f G ∘f F = K ∘f (H ∘f G) ∘f F : ap (λx, K ∘f x) !functor.assoc ... = (K ∘f H ∘f G) ∘f F : functor.assoc ... = ((K ∘f H) ∘f G) ∘f F : ap (λx, x ∘f F) !functor.assoc) := sorry -- begin -- apply functor_eq2, -- intro a, -- rewrite +ap010_con, -- -- rewrite +ap010_ap, -- -- apply sorry -- /-to prove this we need a stronger ap010-lemma, something like -- ap010 (λy, to_fun_ob (f y)) (functor_mk_eq_constant ...) c = idp -- or something another way of getting ap out of ap010 -- -/ -- --rewrite +ap010_ap, -- --unfold functor.assoc, -- --rewrite ap010_functor_mk_eq_constant, -- end end functor