import standard namespace setoid inductive setoid : Type := | mk_setoid: Π (A : Type'), (A → A → Prop) → setoid set_option pp.universes true check setoid definition test : Type.{2} := setoid.{0} definition carrier (s : setoid) := setoid_rec (λ a eq, a) s definition eqv {s : setoid} : carrier s → carrier s → Prop := setoid_rec (λ a eqv, eqv) s infix `≈`:50 := eqv coercion carrier inductive morphism (s1 s2 : setoid) : Type := | mk_morphism : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism s1 s2 check mk_morphism check λ (s1 s2 : setoid), s1 check λ (s1 s2 : Type), s1 inductive morphism2 (s1 : setoid) (s2 : setoid) : Type := | mk_morphism2 : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism2 s1 s2 check morphism2 check mk_morphism2 inductive my_struct : Type := | mk_foo : Π (s1 s2 : setoid) (s3 s4 : setoid), morphism2 s1 s2 → morphism2 s3 s4 → my_struct check my_struct definition tst2 : Type.{4} := my_struct.{1 2} end setoid