Import cast. Import int. Variable vector : Type -> Nat -> Type Axiom N0 (n : Nat) : n + 0 = n Theorem V0 (T : Type) (n : Nat) : (vector T (n + 0)) = (vector T n) := Congr (Refl (vector T)) (N0 n) Variable f (n : Nat) (v : vector Int n) : Int Variable m : Nat Variable v1 : vector Int (m + 0) (* The following application will fail because (vector Int (m + 0)) and (vector Int m) are not definitionally equal. *) Check f m v1 (* The next one succeeds using the "casting" operator. We can do it, because (V0 Int m) is a proof that (vector Int (m + 0)) and (vector Int m) are propositionally equal. That is, they have the same interpretation in the lean set theoretic semantics. *) Check f m (cast (V0 Int m) v1)