/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.nat.algebra Authors: Jeremy Avigad nat is a comm_semiring -/ import data.nat.basic algebra.binary algebra.ring open binary namespace nat section open [classes] algebra protected definition comm_semiring [instance] : algebra.comm_semiring nat := algebra.comm_semiring.mk add add.assoc zero zero_add add_zero add.comm mul mul.assoc (succ zero) one_mul mul_one mul.left_distrib mul.right_distrib zero_mul mul_zero (ne.symm (succ_ne_zero zero)) mul.comm end section port_algebra theorem mul.left_comm : ∀a b c : ℕ, a * (b * c) = b * (a * c) := algebra.mul.left_comm theorem mul.right_comm : ∀a b c : ℕ, (a * b) * c = (a * c) * b := algebra.mul.right_comm definition dvd (a b : ℕ) : Prop := algebra.dvd a b infix `|` := dvd theorem dvd.intro : ∀{a b c : ℕ} (H : a * b = c), a | c := @algebra.dvd.intro _ _ theorem dvd.ex : ∀{a b : ℕ} (H : a | b), ∃c, a * c = b := @algebra.dvd.ex _ _ theorem dvd.elim : ∀{P : Prop} {a b : ℕ} (H₁ : a | b) (H₂ : ∀c, a * c = b → P), P := @algebra.dvd.elim _ _ theorem dvd.refl : ∀a : ℕ, a | a := algebra.dvd.refl theorem dvd.trans : ∀{a b c : ℕ} (H₁ : a | b) (H₂ : b | c), a | c := @algebra.dvd.trans _ _ theorem eq_zero_of_zero_dvd : ∀{a : ℕ} (H : 0 | a), a = 0 := @algebra.eq_zero_of_zero_dvd _ _ theorem dvd_zero : ∀a : ℕ, a | 0 := algebra.dvd_zero theorem one_dvd : ∀a : ℕ, 1 | a := algebra.one_dvd theorem dvd_mul_right : ∀a b : ℕ, a | a * b := algebra.dvd_mul_right theorem dvd_mul_left : ∀a b : ℕ, a | b * a := algebra.dvd_mul_left theorem dvd_mul_of_dvd_left : ∀{a b : ℕ} (H : a | b) (c : ℕ), a | b * c := @algebra.dvd_mul_of_dvd_left _ _ theorem dvd_mul_of_dvd_right : ∀{a b : ℕ} (H : a | b) (c : ℕ), a | c * b := @algebra.dvd_mul_of_dvd_right _ _ theorem mul_dvd_mul : ∀{a b c d : ℕ}, a | b → c | d → a * c | b * d := @algebra.mul_dvd_mul _ _ theorem dvd_of_mul_right_dvd : ∀{a b c : ℕ}, a * b | c → a | c := @algebra.dvd_of_mul_right_dvd _ _ theorem dvd_of_mul_left_dvd : ∀{a b c : ℕ}, a * b | c → b | c := @algebra.dvd_of_mul_left_dvd _ _ theorem dvd_add : ∀{a b c : ℕ}, a | b → a | c → a | b + c := @algebra.dvd_add _ _ end port_algebra end nat