/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about pullbacks -/ import cubical.square open eq equiv is_equiv function prod unit is_trunc sigma variables {A₀₀ A₂₀ A₄₀ A₀₂ A₂₂ A₄₂ : Type} (f₁₀ : A₀₀ → A₂₀) (f₃₀ : A₂₀ → A₄₀) (f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) (f₄₁ : A₄₀ → A₄₂) (f₁₂ : A₀₂ → A₂₂) (f₃₂ : A₂₂ → A₄₂) structure pullback (f₂₁ : A₂₀ → A₂₂) (f₁₂ : A₀₂ → A₂₂) := (pr1 : A₂₀) (pr2 : A₀₂) (pr1_pr2 : f₂₁ pr1 = f₁₂ pr2) namespace pullback protected definition sigma_char [constructor] : pullback f₂₁ f₁₂ ≃ Σ(a₂₀ : A₂₀) (a₀₂ : A₀₂), f₂₁ a₂₀ = f₁₂ a₀₂ := begin fapply equiv.MK, { intro x, induction x with a₂₀ a₀₂ p, exact ⟨a₂₀, a₀₂, p⟩}, { intro x, induction x with a₂₀ y, induction y with a₀₂ p, exact pullback.mk a₂₀ a₀₂ p}, { intro x, induction x with a₂₀ y, induction y with a₀₂ p, reflexivity}, { intro x, induction x with a₂₀ a₀₂ p, reflexivity}, end variables {f₁₀ f₃₀ f₀₁ f₂₁ f₄₁ f₁₂ f₃₂} definition pullback_corec [constructor] (p : Πa, f₂₁ (f₁₀ a) = f₁₂ (f₀₁ a)) (a : A₀₀) : pullback f₂₁ f₁₂ := pullback.mk (f₁₀ a) (f₀₁ a) (p a) definition pullback_eq {x y : pullback f₂₁ f₁₂} (p1 : pr1 x = pr1 y) (p2 : pr2 x = pr2 y) (r : square (pr1_pr2 x) (pr1_pr2 y) (ap f₂₁ p1) (ap f₁₂ p2)) : x = y := by induction y; induction x; esimp at *; induction p1; induction p2; exact ap (pullback.mk _ _) (eq_of_vdeg_square r) definition pullback_comm_equiv [constructor] : pullback f₁₂ f₂₁ ≃ pullback f₂₁ f₁₂ := begin fapply equiv.MK, { intro v, induction v with x y p, exact pullback.mk y x p⁻¹}, { intro v, induction v with x y p, exact pullback.mk y x p⁻¹}, { intro v, induction v, esimp, exact ap _ !inv_inv}, { intro v, induction v, esimp, exact ap _ !inv_inv}, end definition pullback_unit_equiv [constructor] : pullback (λ(x : A₀₂), star) (λ(x : A₂₀), star) ≃ A₀₂ × A₂₀ := begin fapply equiv.MK, { intro v, induction v with x y p, exact (x, y)}, { intro v, induction v with x y, exact pullback.mk x y idp}, { intro v, induction v, reflexivity}, { intro v, induction v, esimp, apply ap _ !is_prop.elim}, end definition pullback_along {f : A₂₀ → A₂₂} (g : A₀₂ → A₂₂) : pullback f g → A₂₀ := pr1 postfix `^*`:(max+1) := pullback_along variables (f₁₀ f₃₀ f₀₁ f₂₁ f₄₁ f₁₂ f₃₂) structure pullback_square (f₁₀ : A₀₀ → A₂₀) (f₁₂ : A₀₂ → A₂₂) (f₀₁ : A₀₀ → A₀₂) (f₂₁ : A₂₀ → A₂₂) : Type := (comm : Πa, f₂₁ (f₁₀ a) = f₁₂ (f₀₁ a)) (is_pullback : is_equiv (pullback_corec comm : A₀₀ → pullback f₂₁ f₁₂)) attribute pullback_square.is_pullback [instance] definition pbs_comm [unfold 9] := @pullback_square.comm definition pullback_square_pullback : pullback_square (pr1 : pullback f₂₁ f₁₂ → A₂₀) f₁₂ pr2 f₂₁ := pullback_square.mk pr1_pr2 (adjointify _ (λf, f) (λf, by induction f; reflexivity) (λg, by induction g; reflexivity)) variables {f₁₀ f₃₀ f₀₁ f₂₁ f₄₁ f₁₂ f₃₂} definition pullback_square_equiv [constructor] (s : pullback_square f₁₀ f₁₂ f₀₁ f₂₁) : A₀₀ ≃ pullback f₂₁ f₁₂ := equiv.mk _ (pullback_square.is_pullback s) definition of_pullback [unfold 9] (s : pullback_square f₁₀ f₁₂ f₀₁ f₂₁) (x : pullback f₂₁ f₁₂) : A₀₀ := (pullback_square_equiv s)⁻¹ x definition right_of_pullback (s : pullback_square f₁₀ f₁₂ f₀₁ f₂₁) (x : pullback f₂₁ f₁₂) : f₁₀ (of_pullback s x) = pr1 x := ap pr1 (to_right_inv (pullback_square_equiv s) x) definition down_of_pullback (s : pullback_square f₁₀ f₁₂ f₀₁ f₂₁) (x : pullback f₂₁ f₁₂) : f₀₁ (of_pullback s x) = pr2 x := ap pr2 (to_right_inv (pullback_square_equiv s) x) -- definition pullback_square_compose_inverse (s : pullback_square f₁₀ f₁₂ f₀₁ f₂₁) -- (t : pullback_square f₃₀ f₃₂ f₂₁ f₄₁) (x : pullback f₄₁ (f₃₂ ∘ f₁₂)) : A₀₀ := -- let a₂₀' : pullback f₄₁ f₃₂ := -- pullback.mk (pr1 x) (f₁₂ (pr2 x)) (pr1_pr2 x) in -- let a₂₀ : A₂₀ := -- of_pullback t a₂₀' in -- have a₀₀' : pullback f₂₁ f₁₂, -- from pullback.mk a₂₀ (pr2 x) !down_of_pullback, -- show A₀₀, -- from of_pullback s a₀₀' -- local attribute pullback_square_compose_inverse [reducible] -- definition down_psci (s : pullback_square f₁₀ f₁₂ f₀₁ f₂₁) -- (t : pullback_square f₃₀ f₃₂ f₂₁ f₄₁) (x : pullback f₄₁ (f₃₂ ∘ f₁₂)) : -- f₀₁ (pullback_square_compose_inverse s t x) = pr2 x := -- by apply down_of_pullback -- definition pullback_square_compose [constructor] (s : pullback_square f₁₀ f₁₂ f₀₁ f₂₁) -- (t : pullback_square f₃₀ f₃₂ f₂₁ f₄₁) : pullback_square (f₃₀ ∘ f₁₀) (f₃₂ ∘ f₁₂) f₀₁ f₄₁ := -- pullback_square.mk -- (λa, pbs_comm t (f₁₀ a) ⬝ ap f₃₂ (pbs_comm s a)) -- (adjointify _ -- (pullback_square_compose_inverse s t) -- begin -- intro x, induction x with x y p, esimp, -- fapply pullback_eq: esimp, -- { exact ap f₃₀ !right_of_pullback ⬝ !right_of_pullback}, -- { apply down_of_pullback}, -- { esimp, exact sorry } -- end -- begin -- intro x, esimp, exact sorry -- end) end pullback