import data.finset open finset list example (A : Type) (f : nat → nat → nat → nat) (a b : nat) : a = b → f a = f b := begin intros, congruence, assumption end structure finite_set [class] {T : Type} (xs : set T) := (to_finset : finset T) (is_equiv : to_set to_finset = xs) definition finset_set.is_subsingleton [instance] (T : Type) (xs : set T) : subsingleton (finite_set xs) := begin constructor, intro a b, induction a with f₁ h₁, induction b with f₂ h₂, subst xs, note e := to_set.inj h₂, subst e end open finite_set definition card {T : Type} (xs : set T) [fxs : finite_set xs] := finset.card (to_finset xs) example (A : Type) (s₁ s₂ : set A) [fxs₁ : finite_set s₁] [fxs₂ : finite_set s₂] : s₁ = s₂ → card s₁ = card s₂ := begin intros, congruence, unfold set at *, assumption end example {A : Type} (l₁ l₂ : list A) (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) : l₁ = l₂ → last l₁ h₁ = last l₂ h₂ := begin intros, congruence, assumption end example (A : Type) (last₁ last₂ : Π l : list A, l ≠ [] → A) (l₁ l₂ : list A) (h₁ : l₁ ≠ []) (h₂ : l₂ ≠ []) : last₁ = last₂ → l₁ = l₂ → last₁ l₁ h₁ = last₂ l₂ h₂ := begin intro e₁ e₂, congruence, repeat assumption end