/- Copyright (c) 2015 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad Finite products on a monoid, and finite sums on an additive monoid. There are three versions: Prodl, Suml : products and sums over lists Prod, Sum (in namespace finset) : products and sums over finsets Prod, Sum (in namespace set) : products and sums over finite sets We have to be careful with dependencies. This theory imports files from finset and list, which import basic files from nat. -/ import .group .group_power data.list.basic data.list.perm data.finset.basic data.set.finite open function binary quot subtype list finset variables {A B : Type} variable [deceqA : decidable_eq A] /- -- list versions. -/ /- Prodl: product indexed by a list -/ section monoid variable [mB : monoid B] include mB definition mulf (f : A → B) : B → A → B := λ b a, b * f a definition Prodl (l : list A) (f : A → B) : B := list.foldl (mulf f) 1 l -- ∏ x ← l, f x notation `∏` binders `←` l, r:(scoped f, Prodl l f) := r private theorem foldl_const (f : A → B) : ∀ (l : list A) (b : B), foldl (mulf f) b l = b * foldl (mulf f) 1 l | [] b := by rewrite [*foldl_nil, mul_one] | (a::l) b := by rewrite [*foldl_cons, foldl_const, {foldl _ (mulf f 1 a) _}foldl_const, ↑mulf, one_mul, mul.assoc] theorem Prodl_nil (f : A → B) : Prodl [] f = 1 := rfl theorem Prodl_cons (f : A → B) (a : A) (l : list A) : Prodl (a::l) f = f a * Prodl l f := by rewrite [↑Prodl, foldl_cons, foldl_const, ↑mulf, one_mul] theorem Prodl_append : ∀ (l₁ l₂ : list A) (f : A → B), Prodl (l₁++l₂) f = Prodl l₁ f * Prodl l₂ f | [] l₂ f := by rewrite [append_nil_left, Prodl_nil, one_mul] | (a::l) l₂ f := by rewrite [append_cons, *Prodl_cons, Prodl_append, mul.assoc] section deceqA include deceqA theorem Prodl_insert_of_mem (f : A → B) {a : A} {l : list A} : a ∈ l → Prodl (insert a l) f = Prodl l f := assume ainl, by rewrite [insert_eq_of_mem ainl] theorem Prodl_insert_of_not_mem (f : A → B) {a : A} {l : list A} : a ∉ l → Prodl (insert a l) f = f a * Prodl l f := assume nainl, by rewrite [insert_eq_of_not_mem nainl, Prodl_cons] theorem Prodl_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) : Prodl (union l₁ l₂) f = Prodl l₁ f * Prodl l₂ f := by rewrite [union_eq_append d, Prodl_append] end deceqA theorem Prodl_one : ∀(l : list A), Prodl l (λ x, 1) = (1:B) | [] := rfl | (a::l) := by rewrite [Prodl_cons, Prodl_one, mul_one] lemma Prodl_singleton {a : A} {f : A → B} : Prodl [a] f = f a := !one_mul lemma Prodl_map {f : A → B} : ∀ {l : list A}, Prodl l f = Prodl (map f l) id | nil := by rewrite [map_nil] | (a::l) := begin rewrite [map_cons, Prodl_cons f, Prodl_cons id (f a), Prodl_map] end open nat lemma Prodl_eq_pow_of_const {f : A → B} : ∀ {l : list A} b, (∀ a, a ∈ l → f a = b) → Prodl l f = b ^ length l | nil := take b, assume Pconst, by rewrite [length_nil, {b^0}pow_zero] | (a::l) := take b, assume Pconst, assert Pconstl : ∀ a', a' ∈ l → f a' = b, from take a' Pa'in, Pconst a' (mem_cons_of_mem a Pa'in), by rewrite [Prodl_cons f, Pconst a !mem_cons, Prodl_eq_pow_of_const b Pconstl, length_cons, add_one, pow_succ b] end monoid section comm_monoid variable [cmB : comm_monoid B] include cmB theorem Prodl_mul (l : list A) (f g : A → B) : Prodl l (λx, f x * g x) = Prodl l f * Prodl l g := list.induction_on l (by rewrite [*Prodl_nil, mul_one]) (take a l, assume IH, by rewrite [*Prodl_cons, IH, *mul.assoc, mul.left_comm (Prodl l f)]) end comm_monoid /- -- finset versions -/ /- Prod: product indexed by a finset -/ namespace finset variable [cmB : comm_monoid B] include cmB theorem mulf_rcomm (f : A → B) : right_commutative (mulf f) := right_commutative_compose_right (@has_mul.mul B _) f (@mul.right_comm B _) theorem Prodl_eq_Prodl_of_perm (f : A → B) {l₁ l₂ : list A} : perm l₁ l₂ → Prodl l₁ f = Prodl l₂ f := λ p, perm.foldl_eq_of_perm (mulf_rcomm f) p 1 definition Prod (s : finset A) (f : A → B) : B := quot.lift_on s (λ l, Prodl (elt_of l) f) (λ l₁ l₂ p, Prodl_eq_Prodl_of_perm f p) -- ∏ x ∈ s, f x notation `∏` binders `∈` s, r:(scoped f, Prod s f) := r theorem Prod_empty (f : A → B) : Prod ∅ f = 1 := Prodl_nil f theorem Prod_mul (s : finset A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g := quot.induction_on s (take u, !Prodl_mul) section deceqA include deceqA theorem Prod_insert_of_mem (f : A → B) {a : A} {s : finset A} : a ∈ s → Prod (insert a s) f = Prod s f := quot.induction_on s (λ l ainl, Prodl_insert_of_mem f ainl) theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : finset A} : a ∉ s → Prod (insert a s) f = f a * Prod s f := quot.induction_on s (λ l nainl, Prodl_insert_of_not_mem f nainl) theorem Prod_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := have H1 : disjoint s₁ s₂ → Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f, from quot.induction_on₂ s₁ s₂ (λ l₁ l₂ d, Prodl_union f d), H1 (disjoint_of_inter_eq_empty disj) theorem Prod_ext {s : finset A} {f g : A → B} : (∀{x}, x ∈ s → f x = g x) → Prod s f = Prod s g := finset.induction_on s (assume H, rfl) (take x s', assume H1 : x ∉ s', assume IH : (∀ {x : A}, x ∈ s' → f x = g x) → Prod s' f = Prod s' g, assume H2 : ∀{y}, y ∈ insert x s' → f y = g y, assert H3 : ∀y, y ∈ s' → f y = g y, from take y, assume H', H2 (mem_insert_of_mem _ H'), assert H4 : f x = g x, from H2 !mem_insert, by rewrite [Prod_insert_of_not_mem f H1, Prod_insert_of_not_mem g H1, IH H3, H4]) end deceqA theorem Prod_one (s : finset A) : Prod s (λ x, 1) = (1:B) := quot.induction_on s (take u, !Prodl_one) end finset section add_monoid variable [amB : add_monoid B] include amB local attribute add_monoid.to_monoid [trans_instance] definition Suml (l : list A) (f : A → B) : B := Prodl l f -- ∑ x ← l, f x notation `∑` binders `←` l, r:(scoped f, Suml l f) := r theorem Suml_nil (f : A → B) : Suml [] f = 0 := Prodl_nil f theorem Suml_cons (f : A → B) (a : A) (l : list A) : Suml (a::l) f = f a + Suml l f := Prodl_cons f a l theorem Suml_append (l₁ l₂ : list A) (f : A → B) : Suml (l₁++l₂) f = Suml l₁ f + Suml l₂ f := Prodl_append l₁ l₂ f section deceqA include deceqA theorem Suml_insert_of_mem (f : A → B) {a : A} {l : list A} (H : a ∈ l) : Suml (insert a l) f = Suml l f := Prodl_insert_of_mem f H theorem Suml_insert_of_not_mem (f : A → B) {a : A} {l : list A} (H : a ∉ l) : Suml (insert a l) f = f a + Suml l f := Prodl_insert_of_not_mem f H theorem Suml_union {l₁ l₂ : list A} (f : A → B) (d : disjoint l₁ l₂) : Suml (union l₁ l₂) f = Suml l₁ f + Suml l₂ f := Prodl_union f d end deceqA theorem Suml_zero (l : list A) : Suml l (λ x, 0) = (0:B) := Prodl_one l end add_monoid section add_comm_monoid variable [acmB : add_comm_monoid B] include acmB local attribute add_comm_monoid.to_comm_monoid [trans_instance] theorem Suml_add (l : list A) (f g : A → B) : Suml l (λx, f x + g x) = Suml l f + Suml l g := Prodl_mul l f g end add_comm_monoid /- Sum -/ namespace finset variable [acmB : add_comm_monoid B] include acmB local attribute add_comm_monoid.to_comm_monoid [trans_instance] definition Sum (s : finset A) (f : A → B) : B := Prod s f -- ∑ x ∈ s, f x notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f theorem Sum_add (s : finset A) (f g : A → B) : Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g section deceqA include deceqA theorem Sum_insert_of_mem (f : A → B) {a : A} {s : finset A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : finset A} (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H theorem Sum_union (f : A → B) {s₁ s₂ : finset A} (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj theorem Sum_ext {s : finset A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := Prod_ext H end deceqA theorem Sum_zero (s : finset A) : Sum s (λ x, 0) = (0:B) := Prod_one s end finset /- -- set versions -/ namespace set open classical /- Prod: product indexed by a set -/ section Prod variable [cmB : comm_monoid B] include cmB noncomputable definition Prod (s : set A) (f : A → B) : B := finset.Prod (to_finset s) f -- ∏ x ∈ s, f x notation `∏` binders `∈` s, r:(scoped f, prod s f) := r theorem Prod_empty (f : A → B) : Prod ∅ f = 1 := by rewrite [↑Prod, to_finset_empty] theorem Prod_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Prod s f = 1 := by rewrite [↑Prod, to_finset_of_not_finite nfins] theorem Prod_mul (s : set A) (f g : A → B) : Prod s (λx, f x * g x) = Prod s f * Prod s g := by rewrite [↑Prod, finset.Prod_mul] theorem Prod_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) : Prod (insert a s) f = Prod s f := by_cases (suppose finite s, assert (#finset a ∈ set.to_finset s), by rewrite mem_to_finset_eq; apply H, by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_mem f this]) (assume nfs : ¬ finite s, assert ¬ finite (insert a s), from assume H, nfs (finite_of_finite_insert H), by rewrite [Prod_of_not_finite nfs, Prod_of_not_finite this]) theorem Prod_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) : Prod (insert a s) f = f a * Prod s f := assert (#finset a ∉ set.to_finset s), by rewrite mem_to_finset_eq; apply H, by rewrite [↑Prod, to_finset_insert, finset.Prod_insert_of_not_mem f this] theorem Prod_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂] (disj : s₁ ∩ s₂ = ∅) : Prod (s₁ ∪ s₂) f = Prod s₁ f * Prod s₂ f := begin rewrite [↑Prod, to_finset_union], apply finset.Prod_union, apply finset.eq_of_to_set_eq_to_set, rewrite [finset.to_set_inter, *to_set_to_finset, finset.to_set_empty, disj] end theorem Prod_ext {s : set A} {f g : A → B} (H : ∀{x}, x ∈ s → f x = g x) : Prod s f = Prod s g := by_cases (suppose finite s, by esimp [Prod]; apply finset.Prod_ext; intro x; rewrite [mem_to_finset_eq]; apply H) (assume nfs : ¬ finite s, by rewrite [*Prod_of_not_finite nfs]) theorem Prod_one (s : set A) : Prod s (λ x, 1) = (1:B) := by rewrite [↑Prod, finset.Prod_one] end Prod /- Sum -/ section Sum variable [acmB : add_comm_monoid B] include acmB local attribute add_comm_monoid.to_comm_monoid [trans_instance] noncomputable definition Sum (s : set A) (f : A → B) : B := Prod s f -- ∑ x ∈ s, f x notation `∑` binders `∈` s, r:(scoped f, Sum s f) := r theorem Sum_empty (f : A → B) : Sum ∅ f = 0 := Prod_empty f theorem Sum_of_not_finite {s : set A} (nfins : ¬ finite s) (f : A → B) : Sum s f = 0 := Prod_of_not_finite nfins f theorem Sum_add (s : set A) (f g : A → B) : Sum s (λx, f x + g x) = Sum s f + Sum s g := Prod_mul s f g theorem Sum_insert_of_mem (f : A → B) {a : A} {s : set A} (H : a ∈ s) : Sum (insert a s) f = Sum s f := Prod_insert_of_mem f H theorem Sum_insert_of_not_mem (f : A → B) {a : A} {s : set A} [finite s] (H : a ∉ s) : Sum (insert a s) f = f a + Sum s f := Prod_insert_of_not_mem f H theorem Sum_union (f : A → B) {s₁ s₂ : set A} [finite s₁] [finite s₂] (disj : s₁ ∩ s₂ = ∅) : Sum (s₁ ∪ s₂) f = Sum s₁ f + Sum s₂ f := Prod_union f disj theorem Sum_ext {s : set A} {f g : A → B} (H : ∀x, x ∈ s → f x = g x) : Sum s f = Sum s g := Prod_ext H theorem Sum_zero (s : set A) : Sum s (λ x, 0) = (0:B) := Prod_one s end Sum end set