/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Squareovers -/ import .square open eq equiv is_equiv equiv.ops namespace eq -- we give the argument B explicitly, because Lean would find (λa, B a) by itself, which -- makes the type uglier (of course the two terms are definitionally equal) inductive squareover {A : Type} (B : A → Type) {a₀₀ : A} {b₀₀ : B a₀₀} : Π{a₂₀ a₀₂ a₂₂ : A} {p₁₀ : a₀₀ = a₂₀} {p₁₂ : a₀₂ = a₂₂} {p₀₁ : a₀₀ = a₀₂} {p₂₁ : a₂₀ = a₂₂} (s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁) {b₂₀ : B a₂₀} {b₀₂ : B a₀₂} {b₂₂ : B a₂₂} (q₁₀ : pathover B b₀₀ p₁₀ b₂₀) (q₁₂ : pathover B b₀₂ p₁₂ b₂₂) (q₀₁ : pathover B b₀₀ p₀₁ b₀₂) (q₂₁ : pathover B b₂₀ p₂₁ b₂₂), Type := idsquareo : squareover B ids idpo idpo idpo idpo variables {A A' : Type} {B : A → Type} {a a' a'' a₀₀ a₂₀ a₄₀ a₀₂ a₂₂ a₂₄ a₀₄ a₄₂ a₄₄ : A} /-a₀₀-/ {p₁₀ : a₀₀ = a₂₀} /-a₂₀-/ {p₃₀ : a₂₀ = a₄₀} /-a₄₀-/ {p₀₁ : a₀₀ = a₀₂} /-s₁₁-/ {p₂₁ : a₂₀ = a₂₂} /-s₃₁-/ {p₄₁ : a₄₀ = a₄₂} /-a₀₂-/ {p₁₂ : a₀₂ = a₂₂} /-a₂₂-/ {p₃₂ : a₂₂ = a₄₂} /-a₄₂-/ {p₀₃ : a₀₂ = a₀₄} /-s₁₃-/ {p₂₃ : a₂₂ = a₂₄} /-s₃₃-/ {p₄₃ : a₄₂ = a₄₄} /-a₀₄-/ {p₁₄ : a₀₄ = a₂₄} /-a₂₄-/ {p₃₄ : a₂₄ = a₄₄} /-a₄₄-/ {s₁₁ : square p₁₀ p₁₂ p₀₁ p₂₁} {s₃₁ : square p₃₀ p₃₂ p₂₁ p₄₁} {s₁₃ : square p₁₂ p₁₄ p₀₃ p₂₃} {s₃₃ : square p₃₂ p₃₄ p₂₃ p₄₃} {b₀₀ : B a₀₀} {b₂₀ : B a₂₀} {b₄₀ : B a₄₀} {b₀₂ : B a₀₂} {b₂₂ : B a₂₂} {b₄₂ : B a₄₂} {b₀₄ : B a₀₄} {b₂₄ : B a₂₄} {b₄₄ : B a₄₄} /-b₀₀-/ {q₁₀ : b₀₀ =[p₁₀] b₂₀} /-b₂₀-/ {q₃₀ : b₂₀ =[p₃₀] b₄₀} /-b₄₀-/ {q₀₁ : b₀₀ =[p₀₁] b₀₂} /-t₁₁-/ {q₂₁ : b₂₀ =[p₂₁] b₂₂} /-t₃₁-/ {q₄₁ : b₄₀ =[p₄₁] b₄₂} /-b₀₂-/ {q₁₂ : b₀₂ =[p₁₂] b₂₂} /-b₂₂-/ {q₃₂ : b₂₂ =[p₃₂] b₄₂} /-b₄₂-/ {q₀₃ : b₀₂ =[p₀₃] b₀₄} /-t₁₃-/ {q₂₃ : b₂₂ =[p₂₃] b₂₄} /-t₃₃-/ {q₄₃ : b₄₂ =[p₄₃] b₄₄} /-b₀₄-/ {q₁₄ : b₀₄ =[p₁₄] b₂₄} /-b₂₄-/ {q₃₄ : b₂₄ =[p₃₄] b₄₄} /-b₄₄-/ definition squareo := @squareover A B a₀₀ definition idsquareo [reducible] [constructor] (b₀₀ : B a₀₀) := @squareover.idsquareo A B a₀₀ b₀₀ definition idso [reducible] [constructor] := @squareover.idsquareo A B a₀₀ b₀₀ definition apds (f : Πa, B a) (s : square p₁₀ p₁₂ p₀₁ p₂₁) : squareover B s (apdo f p₁₀) (apdo f p₁₂) (apdo f p₀₁) (apdo f p₂₁) := square.rec_on s idso definition vrflo : squareover B vrfl q₁₀ q₁₀ idpo idpo := by induction q₁₀; exact idso definition hrflo : squareover B hrfl idpo idpo q₁₀ q₁₀ := by induction q₁₀; exact idso definition vdeg_squareover {p₁₀'} {s : p₁₀ = p₁₀'} {q₁₀' : b₀₀ =[p₁₀'] b₂₀} (r : change_path s q₁₀ = q₁₀') : squareover B (vdeg_square s) q₁₀ q₁₀' idpo idpo := by induction s; esimp at *; induction r; exact vrflo definition hdeg_squareover {p₀₁'} {s : p₀₁ = p₀₁'} {q₀₁' : b₀₀ =[p₀₁'] b₀₂} (r : change_path s q₀₁ = q₀₁') : squareover B (hdeg_square s) idpo idpo q₀₁ q₀₁' := by induction s; esimp at *; induction r; exact hrflo definition hconcato (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (t₃₁ : squareover B s₃₁ q₃₀ q₃₂ q₂₁ q₄₁) : squareover B (hconcat s₁₁ s₃₁) (q₁₀ ⬝o q₃₀) (q₁₂ ⬝o q₃₂) q₀₁ q₄₁ := by induction t₃₁; exact t₁₁ definition vconcato (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (t₁₃ : squareover B s₁₃ q₁₂ q₁₄ q₀₃ q₂₃) : squareover B (vconcat s₁₁ s₁₃) q₁₀ q₁₄ (q₀₁ ⬝o q₀₃) (q₂₁ ⬝o q₂₃) := by induction t₁₃; exact t₁₁ definition hinverseo (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : squareover B (hinverse s₁₁) q₁₀⁻¹ᵒ q₁₂⁻¹ᵒ q₂₁ q₀₁ := by induction t₁₁; constructor definition vinverseo (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : squareover B (vinverse s₁₁) q₁₂ q₁₀ q₀₁⁻¹ᵒ q₂₁⁻¹ᵒ := by induction t₁₁; constructor definition eq_vconcato {q : b₀₀ =[p₁₀] b₂₀} (r : q = q₁₀) (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : squareover B s₁₁ q q₁₂ q₀₁ q₂₁ := by induction r; exact t₁₁ definition vconcato_eq {q : b₀₂ =[p₁₂] b₂₂} (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (r : q₁₂ = q) : squareover B s₁₁ q₁₀ q q₀₁ q₂₁ := by induction r; exact t₁₁ definition eq_hconcato {q : b₀₀ =[p₀₁] b₀₂} (r : q = q₀₁) (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : squareover B s₁₁ q₁₀ q₁₂ q q₂₁ := by induction r; exact t₁₁ definition hconcato_eq {q : b₂₀ =[p₂₁] b₂₂} (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (r : q₂₁ = q) : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q := by induction r; exact t₁₁ definition pathover_vconcato {p : a₀₀ = a₂₀} {sp : p = p₁₀} {q : b₀₀ =[p] b₂₀} (r : change_path sp q = q₁₀) (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : squareover B (sp ⬝pv s₁₁) q q₁₂ q₀₁ q₂₁ := by induction sp; induction r; exact t₁₁ definition vconcato_pathover {p : a₀₂ = a₂₂} {sp : p₁₂ = p} {q : b₀₂ =[p] b₂₂} (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (r : change_path sp q₁₂ = q) : squareover B (s₁₁ ⬝vp sp) q₁₀ q q₀₁ q₂₁ := by induction sp; induction r; exact t₁₁ definition pathover_hconcato {p : a₀₀ = a₀₂} {sp : p = p₀₁} {q : b₀₀ =[p] b₀₂} (r : change_path sp q = q₀₁) (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : squareover B (sp ⬝ph s₁₁) q₁₀ q₁₂ q q₂₁ := by induction sp; induction r; exact t₁₁ definition hconcato_pathover {p : a₂₀ = a₂₂} {sp : p₂₁ = p} {q : b₂₀ =[p] b₂₂} (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) (r : change_path sp q₂₁ = q) : squareover B (s₁₁ ⬝hp sp) q₁₀ q₁₂ q₀₁ q := by induction sp; induction r; exact t₁₁ -- relating squareovers to squares definition square_of_squareover (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : square (!con_tr ⬝ ap (λa, p₂₁ ▸ a) (tr_eq_of_pathover q₁₀)) (tr_eq_of_pathover q₁₂) (ap (λq, q ▸ b₀₀) (eq_of_square s₁₁) ⬝ !con_tr ⬝ ap (λa, p₁₂ ▸ a) (tr_eq_of_pathover q₀₁)) (tr_eq_of_pathover q₂₁) := by induction t₁₁; esimp; constructor /- definition squareover_of_square (q : square (!con_tr ⬝ ap (λa, p₂₁ ▸ a) (tr_eq_of_pathover q₁₀)) (tr_eq_of_pathover q₁₂) (ap (λq, q ▸ b₀₀) (eq_of_square s₁₁) ⬝ !con_tr ⬝ ap (λa, p₁₂ ▸ a) (tr_eq_of_pathover q₀₁)) (tr_eq_of_pathover q₂₁)) : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁ := sorry -/ definition square_of_squareover_ids {b₀₀ b₀₂ b₂₀ b₂₂ : B a} {t : b₀₀ = b₂₀} {b : b₀₂ = b₂₂} {l : b₀₀ = b₀₂} {r : b₂₀ = b₂₂} (so : squareover B ids (pathover_idp_of_eq t) (pathover_idp_of_eq b) (pathover_idp_of_eq l) (pathover_idp_of_eq r)) : square t b l r := begin let H := square_of_squareover so, -- use apply ... in rewrite [▸* at H,+idp_con at H,+ap_id at H,↑pathover_idp_of_eq at H], rewrite [+to_right_inv !(pathover_equiv_tr_eq (refl a)) at H], exact H end definition squareover_ids_of_square {b₀₀ b₀₂ b₂₀ b₂₂ : B a} {t : b₀₀ = b₂₀} {b : b₀₂ = b₂₂} {l : b₀₀ = b₀₂} {r : b₂₀ = b₂₂} (q : square t b l r) : squareover B ids (pathover_idp_of_eq t) (pathover_idp_of_eq b) (pathover_idp_of_eq l) (pathover_idp_of_eq r) := square.rec_on q idso -- relating pathovers to squareovers definition pathover_of_squareover' (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : q₁₀ ⬝o q₂₁ =[eq_of_square s₁₁] q₀₁ ⬝o q₁₂ := by induction t₁₁; constructor definition pathover_of_squareover {s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂} (t₁₁ : squareover B (square_of_eq s) q₁₀ q₁₂ q₀₁ q₂₁) : q₁₀ ⬝o q₂₁ =[s] q₀₁ ⬝o q₁₂ := begin revert s t₁₁, refine equiv_rect' !square_equiv_eq⁻¹ᵉ (λa b, squareover B b _ _ _ _ → _) _, intro s, exact pathover_of_squareover' end definition squareover_of_pathover {s : p₁₀ ⬝ p₂₁ = p₀₁ ⬝ p₁₂} (r : q₁₀ ⬝o q₂₁ =[s] q₀₁ ⬝o q₁₂) : squareover B (square_of_eq s) q₁₀ q₁₂ q₀₁ q₂₁ := by induction q₁₂; esimp [concato] at r;induction r;induction q₂₁;induction q₁₀;constructor definition pathover_top_of_squareover (t₁₁ : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : q₁₀ =[eq_top_of_square s₁₁] q₀₁ ⬝o q₁₂ ⬝o q₂₁⁻¹ᵒ := by induction t₁₁; constructor definition squareover_of_pathover_top {s : p₁₀ = p₀₁ ⬝ p₁₂ ⬝ p₂₁⁻¹} (r : q₁₀ =[s] q₀₁ ⬝o q₁₂ ⬝o q₂₁⁻¹ᵒ) : squareover B (square_of_eq_top s) q₁₀ q₁₂ q₀₁ q₂₁ := by induction q₂₁; induction q₁₂; esimp at r;induction r;induction q₁₀;constructor definition pathover_of_hdeg_squareover {p₀₁' : a₀₀ = a₀₂} {r : p₀₁ = p₀₁'} {q₀₁' : b₀₀ =[p₀₁'] b₀₂} (t : squareover B (hdeg_square r) idpo idpo q₀₁ q₀₁') : q₀₁ =[r] q₀₁' := by induction r; induction q₀₁'; exact (pathover_of_squareover' t)⁻¹ᵒ definition pathover_of_vdeg_squareover {p₁₀' : a₀₀ = a₂₀} {r : p₁₀ = p₁₀'} {q₁₀' : b₀₀ =[p₁₀'] b₂₀} (t : squareover B (vdeg_square r) q₁₀ q₁₀' idpo idpo) : q₁₀ =[r] q₁₀' := by induction r; induction q₁₀'; exact pathover_of_squareover' t definition squareover_of_eq_top (r : change_path (eq_top_of_square s₁₁) q₁₀ = q₀₁ ⬝o q₁₂ ⬝o q₂₁⁻¹ᵒ) : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁ := begin induction s₁₁, revert q₁₂ q₁₀ r, eapply idp_rec_on q₂₁, clear q₂₁, intro q₁₂, eapply idp_rec_on q₁₂, clear q₁₂, esimp, intros, induction r, eapply idp_rec_on q₁₀, constructor end definition eq_top_of_squareover (r : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : change_path (eq_top_of_square s₁₁) q₁₀ = q₀₁ ⬝o q₁₂ ⬝o q₂₁⁻¹ᵒ := by induction r; reflexivity definition change_square {s₁₁'} (p : s₁₁ = s₁₁') (r : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁) : squareover B s₁₁' q₁₀ q₁₂ q₀₁ q₂₁ := p ▸ r /- definition squareover_equiv_pathover (q₁₀ : b₀₀ =[p₁₀] b₂₀) (q₁₂ : b₀₂ =[p₁₂] b₂₂) (q₀₁ : b₀₀ =[p₀₁] b₀₂) (q₂₁ : b₂₀ =[p₂₁] b₂₂) : squareover B s₁₁ q₁₀ q₁₂ q₀₁ q₂₁ ≃ q₁₀ ⬝o q₂₁ =[eq_of_square s₁₁] q₀₁ ⬝o q₁₂ := begin fapply equiv.MK, { exact pathover_of_squareover}, { intro r, rewrite [-to_left_inv !square_equiv_eq s₁₁], apply squareover_of_pathover, exact r}, { intro r, }, --need characterization of squareover lying over ids. { intro s, induction s, apply idp}, end -/ definition eq_of_vdeg_squareover {q₁₀' : b₀₀ =[p₁₀] b₂₀} (p : squareover B vrfl q₁₀ q₁₀' idpo idpo) : q₁₀ = q₁₀' := begin let H := square_of_squareover p, -- use apply ... in induction p₁₀, -- if needed we can remove this induction and use con_tr_idp in types/eq2 rewrite [▸* at H,idp_con at H,+ap_id at H], let H' := eq_of_vdeg_square H, exact eq_of_fn_eq_fn !pathover_equiv_tr_eq H' end -- definition vdeg_tr_squareover {q₁₂ : p₀₁ ▸ b₀₀ =[p₁₂] p₂₁ ▸ b₂₀} (r : q₁₀ =[_] q₁₂) -- : squareover B s₁₁ q₁₀ q₁₂ !pathover_tr !pathover_tr := -- by induction p;exact vrflo /- A version of eq_pathover where the type of the equality also varies -/ definition eq_pathover_dep {f g : Πa, B a} {p : a = a'} {q : f a = g a} {r : f a' = g a'} (s : squareover B hrfl (pathover_idp_of_eq q) (pathover_idp_of_eq r) (apdo f p) (apdo g p)) : q =[p] r := begin induction p, apply pathover_idp_of_eq, apply eq_of_vdeg_square, exact square_of_squareover_ids s end /- charcaterization of pathovers in pathovers -/ -- in this version the fibration (B) of the pathover does not depend on the variable (a) definition pathover_pathover {a' a₂' : A'} {p : a' = a₂'} {f g : A' → A} {b : Πa, B (f a)} {b₂ : Πa, B (g a)} {q : Π(a' : A'), f a' = g a'} (r : pathover B (b a') (q a') (b₂ a')) (r₂ : pathover B (b a₂') (q a₂') (b₂ a₂')) (s : squareover B (natural_square_tr q p) r r₂ (pathover_ap B f (apdo b p)) (pathover_ap B g (apdo b₂ p))) : pathover (λa, pathover B (b a) (q a) (b₂ a)) r p r₂ := begin induction p, esimp at s, apply pathover_idp_of_eq, apply eq_of_vdeg_squareover, exact s end end eq