---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.connectives.basic logic.classes.decidable logic.classes.inhabited using eq_proofs decidable namespace bool inductive bool : Type := | ff : bool | tt : bool theorem induction_on {p : bool → Prop} (b : bool) (H0 : p ff) (H1 : p tt) : p b := bool_rec H0 H1 b theorem inhabited_bool [instance] : inhabited bool := inhabited_intro ff definition cond {A : Type} (b : bool) (t e : A) := bool_rec e t b theorem dichotomy (b : bool) : b = ff ∨ b = tt := induction_on b (or_inl (refl ff)) (or_inr (refl tt)) theorem cond_ff {A : Type} (t e : A) : cond ff t e = e := refl (cond ff t e) theorem cond_tt {A : Type} (t e : A) : cond tt t e = t := refl (cond tt t e) theorem ff_ne_tt : ¬ ff = tt := assume H : ff = tt, absurd (calc true = cond tt true false : (cond_tt _ _)⁻¹ ... = cond ff true false : {H⁻¹} ... = false : cond_ff _ _) true_ne_false theorem decidable_eq [instance] (a b : bool) : decidable (a = b) := bool_rec (bool_rec (inl (refl ff)) (inr ff_ne_tt) b) (bool_rec (inr (ne_symm ff_ne_tt)) (inl (refl tt)) b) a definition bor (a b : bool) := bool_rec (bool_rec ff tt b) tt a theorem bor_tt_left (a : bool) : bor tt a = tt := refl (bor tt a) infixl `||`:65 := bor theorem bor_tt_right (a : bool) : a || tt = tt := induction_on a (refl (ff || tt)) (refl (tt || tt)) theorem bor_ff_left (a : bool) : ff || a = a := induction_on a (refl (ff || ff)) (refl (ff || tt)) theorem bor_ff_right (a : bool) : a || ff = a := induction_on a (refl (ff || ff)) (refl (tt || ff)) theorem bor_id (a : bool) : a || a = a := induction_on a (refl (ff || ff)) (refl (tt || tt)) theorem bor_comm (a b : bool) : a || b = b || a := induction_on a (induction_on b (refl (ff || ff)) (refl (ff || tt))) (induction_on b (refl (tt || ff)) (refl (tt || tt))) theorem bor_assoc (a b c : bool) : (a || b) || c = a || (b || c) := induction_on a (calc (ff || b) || c = b || c : {bor_ff_left b} ... = ff || (b || c) : bor_ff_left (b || c)⁻¹) (calc (tt || b) || c = tt || c : {bor_tt_left b} ... = tt : bor_tt_left c ... = tt || (b || c) : bor_tt_left (b || c)⁻¹) theorem bor_to_or {a b : bool} : a || b = tt → a = tt ∨ b = tt := bool_rec (assume H : ff || b = tt, have Hb : b = tt, from (bor_ff_left b) ▸ H, or_inr Hb) (assume H, or_inl (refl tt)) a definition band (a b : bool) := bool_rec ff (bool_rec ff tt b) a infixl `&&`:75 := band theorem band_ff_left (a : bool) : ff && a = ff := refl (ff && a) theorem band_tt_left (a : bool) : tt && a = a := induction_on a (refl (tt && ff)) (refl (tt && tt)) theorem band_ff_right (a : bool) : a && ff = ff := induction_on a (refl (ff && ff)) (refl (tt && ff)) theorem band_tt_right (a : bool) : a && tt = a := induction_on a (refl (ff && tt)) (refl (tt && tt)) theorem band_id (a : bool) : a && a = a := induction_on a (refl (ff && ff)) (refl (tt && tt)) theorem band_comm (a b : bool) : a && b = b && a := induction_on a (induction_on b (refl (ff && ff)) (refl (ff && tt))) (induction_on b (refl (tt && ff)) (refl (tt && tt))) theorem band_assoc (a b c : bool) : (a && b) && c = a && (b && c) := induction_on a (calc (ff && b) && c = ff && c : {band_ff_left b} ... = ff : band_ff_left c ... = ff && (b && c) : band_ff_left (b && c)⁻¹) (calc (tt && b) && c = b && c : {band_tt_left b} ... = tt && (b && c) : band_tt_left (b && c)⁻¹) theorem band_eq_tt_elim_left {a b : bool} (H : a && b = tt) : a = tt := or_elim (dichotomy a) (assume H0 : a = ff, absurd_elim (a = tt) (calc ff = ff && b : (band_ff_left _)⁻¹ ... = a && b : {H0⁻¹} ... = tt : H) ff_ne_tt) (assume H1 : a = tt, H1) theorem band_eq_tt_elim_right {a b : bool} (H : a && b = tt) : b = tt := band_eq_tt_elim_left (trans (band_comm b a) H) definition bnot (a : bool) := bool_rec tt ff a prefix `!`:85 := bnot theorem bnot_bnot (a : bool) : !!a = a := induction_on a (refl (!!ff)) (refl (!!tt)) theorem bnot_false : !ff = tt := refl _ theorem bnot_true : !tt = ff := refl _ end bool